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Abstract
A blending of phonological concepts and technical analysis
is proposed to yield a better modeling and understanding of
phonological processes. Based on the manual segmentation
and labeling of the Italian CLIPS corpus we automatically de-
rive a probabilistic set of phonological pronunciation rules: a
new alignment technique is used to map the phonological form
of spontaneous sentences onto the phonetic surface form. A
machine-learning algorithm then calculates a set of phonologi-
cal replacement rules together with their conditional probabil-
ities. A critical analysis of the resulting probabilistic rule set
is presented and discussed with regard to regional Italian ac-
cents. The rule set presented here is also applied in the newly
published web-service WebMAUS that allows a user to segment
and phonetically label Italian speech via a simple web-interface.
Index Terms: Italian, CLIPS, pronunciation, machine-
learning, dialect, MAUS

1. Introduction
Linguistic phonetic analysis typically seeks to construct models
of speech production based on labeled empirical speech data.
Such models often consist of abstract processes leading from
pure meaning to the physical speech signal. These processes are
often of algorithmic (e.g. rule based) and sometimes of proba-
bilistic nature (e.g. certain flavors of Optimality Theory [5]).

In speech technology, on the other hand, the speech signal is
essentially treated as the output of a complex statistical source.
The task is to model this source given certain (discrete) concepts
(often called “training”) and to use the resulting models to cal-
culate conditional probabilities for different speech signals with
different concept values (“test”, e.g. [17], [14]).

In this sense, while there are exceptions on both sides,
linguistic models tend to be “hypothesis-driven” while speech
technology can be seen as “data-driven”.

Both approaches also have their advantages and disadvan-
tages. Linguistic models describe speech surface forms and al-
low the researcher to hypothesize about the nature of the pro-
duction process, while statistical models as applied in speech
technology often neglect human speech production entirely.
Statistical speech models are per se adaptable to speakers, dif-
ferent situations or even new languages, whereas linguistic
models are often language-dependent or based on the observa-
tion of small groups or even single speakers. Linguistic mod-
els often tend to be under-specified in the sense that they de-
scribe many possible surface forms but not their probability.
On the other hand statistical models do the opposite: they adapt
closely to the training material and might therefore not be ro-
bust enough to serve as a general model for speech (e.g. when

applied to speech from a different domain).
In this contribution we suggest a blending of technologi-

cal and linguistic approaches. We exemplify our approach tak-
ing the concrete problem of the pronunciation of contemporary
Italian. Both paradigms outlined above must be able to re-
late linguistic (here: phonological) structures to spontaneous
Italian words and sentences. For instance the word pratica-
mente ‘practically’ can be transformed into the phonological
form /pratikamente/1 according to more or less agreed upon
(standardized) pronunciation rules. But looking at real world
recordings of Italian speech we find phonetic realizations such
as [badigaente] or [priamente] and many others2. A linguistic
model must explain this variability in pronunciation, and the
classical approach would be to formulate phoneme-based re-
placement rules and tie their application to contexts e.g. “word-
position”, “speech rate”, “dialect” (e.g. for [badigaente] there
is – amongst other processes – voicing of intervocalic voiceless
stops (/p, t, k/ > [b, d, g]/V V) in many centro-southern vari-
eties and deletion of intervocalic nasals (m, n > ø/V V) in fast
or less careful speech).

A technological approach on the other hand would use a
statistical model (e.g. constraint-based Hidden Markov Models
for words) to predict the probability of variation in pronuncia-
tion, based on the degree of variability observed in the training
material.

In the following we show that both approaches can be
(partly) merged. The basic idea is to use the phonological
framework of the classical replacement rule together with ma-
chine learning techniques derived from speech technology to
end up with a combined phonological-probabilistic model for
Italian pronunciation. In taking this approach we aim to provide
some new insights for linguistic research as well as to improve
the performance of technological applications such as automatic
speech recognition or automatic phonetic segmentation.

2. Data: The CLIPS Corpus
CLIPS (Corpora e Lessici dell’Italiano Parlato e Scritto) is a
corpus of spoken Italian covering a broad variety of contempo-
rary Italian speech ([13])3.

To guarantee that the five main variants of Italian were rep-
resented the following cities, listed by relevant geo-linguistic

1Here and in the remaining article all phonological and phonetic
symbols are coded in the SAM Phonetic Alphabet [18].

2Examples taken from phonetic transcriptions of the MapTask
recordings DGmtB03P and DGmtB04F, respectively, of the CLIPS cor-
pus [13]; diacritics stripped from the original transcription.

3A complete description of all aspects of the project can be found in
the website documentation (www.clips.unina.it).
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area, were chosen as recording sites:
North: Turin, Genoa, Milan, Bergamo, Parma, Venice
Centre: Florence, Rome, Perugia
Upper southern: Naples, Bari
Extreme southern: Catanzaro, Lecce
Islands: Palermo, Cagliari
Informants were undergraduate students, aged between 18 and
30, who had always been resident in the relevant city area, and
whose parents had also always been resident there. Males and
females are, on average, equally represented in the corpus.

CLIPS is divided into the four sub-corpora: free-field
recordings, radio recordings, television recordings, and tele-
phone conversations. These parts vary along the diamesic (=
“through the media”) axis covering a wide range of possi-
ble recording channels (see Table 1). In total CLIPS com-
prises about 100 hours of audio recordings, the free-field section
(mainly formed by dialogues, as we will see further on) is the
largest and forms approximately 50% of the entire corpus; re-
maining sections cover about 16 hours of recordings each, with
the exception of the orthophonic corpus that consists of less than
4 hours.

The free-field sub-corpus consists of elicited and (semi-
)spontaneous dialogues (presenting a low level of formality)
and read speech (further subdivided into word lists and sentence
lists). The dialogues contain two types of recordings, elicited
using two different techniques: the “Map Task” (MT) method
([2], [6]) and the “Spot-the-difference Game” (SD).

Table 1: Corpus stratification with regard to three dimensions

Diaphasic/Diamesic Diatopic Content

Dialogue (elicited) 15 regional
varieties

map-task
spot the difference

Read Speech 15 regional
varieties

read sentences
word list

Radio & TV 15 regional
varieties

broadcast
talk show
commercials
culture

Telephone 15 regional
varieties

Auto
WoZ

Ortho-phonic standard read sentences

A group of about 15 phoneticians orthographically tran-
scribed about 30% of the recorded material, while 30 dialogues
from the free-field sub-corpus (MT) were also labeled and seg-
mented phonetically. CLIPS provides different types of seg-
mental labeling in the TIMIT ([19]) format, each corresponding
to a phonetic/phonological/lexical level of analysis. Segmental
time-aligned labeling includes the following levels (from nar-
rower to broader):

1. acoustic ACS;

2. phonetic PHN;

3. phonological STD (citation forms);

4. lexical WRD;

5. extra-text ADD (comments).

ACS contains time references and labels related to closure and
release phases of occlusive and affricate consonants. PHN con-
tains a broad segmental phonetic (acoustic) transcription (level

4, [3]). STD is a labeling level without time references con-
taining a word by word phonological transcription automati-
cally generated by means of a rule-and-exception based algo-
rithm specifically produced within the CLIPS project. WRD
consists of a redundant word by word orthographic transcrip-
tion including labels for breaks, disfluencies, noises, and other
similar phenomena.

In the present work we use the PHN and STD label sets of
30 MT dialogues with 30 participants (2 speakers deliver two
MT dialogues in each of 15 recording sites) resulting in a to-
tal of 3229 transcribed dialogue turns, 32255 words and 87057
phonetic segments. Diacritical information was stripped from
the PHN tier before our analysis, e.g. the nasalization of a vowel
was not considered here (see Section 5).

3. Phonological to Phonetic Aligner
The alignment between a phonological transcription v and a
phonetic transcription w is derived from their Levenshtein dis-
tance, i.e. the minimum edit costs to transform v into w. Fol-
lowing the PermA approach of [12] edit costs c for the edit op-
erations substitution, deletion and insertion are defined in terms
of conditional probabilities reflecting phone co-occurrences
between phonological and phonetic transcriptions (including
empty phones ) as follows:

• Substitution:
c(vi, wj) =

{
0 : equal(vi, wj)

1− P (wj |vi) : else.

• Deletion: c(vi, ) = 1− P ( |vi)
• Insertion: c( , wj) = 1− P (wj | )

The probability model for the cost function is calculated
on a word bigram list of phonological and phonetic transcrip-
tion pairs. The list is derived by moving a bigram window with
step-size 1 along the parallel word-segmented PHN and STD
transcription data. The choice of bigram units instead of uni-
grams serves to capture phonological processes operative across
words.

PermA smoothes the conditional probabilities by weight-
ing the co-occurrence count increments within a triangular win-
dow of length 3 and area 1. Insertion and deletion operations
are treated the same way as substitutions by introducing the
empty symbol ‘ ’. Respective co-occurrences are counted by
‘ ’-symbol padding and permutation in the shorter sequences in
the alignment training pairs, normalizing the count increments
of each permutation instance by the number of permutations.

After the training of the cost function, the aligner is applied
to the parallel utterance transcriptions of our data in order to
produce an output of the following form:

# s i # s o p r a # a u n # d a d o # p a ss a #
# s i # s o b r _ # a _ n # d a d O # b a ss a #

(First line being the phonological pronunciation, second line the
phonetic transcription; ‘#’ denotes the word boundary anchors
and ‘ ’ a missing element.)

4. Probabilistic Micro Rule (PMR)
Learning

In a first pass we went over the aligned data set and segmented
the stream of mapped phonemic symbols into “matched” and
“non-matched” sequences. Each instance of “non-matched” is
then formulated into a Probabilistic Micro Rule (PMR) of the
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form a, x, b → y where x is the non-match sequence from the
phonological stream, y the corresponding sequence from the
phonetic stream, and a and b the pre- and post-context sequence
(which must match in both streams) of a fixed length cl. For
example: we, s, t, i → ss. Both, x and y may be or contain
the empty element ‘ ’ but not the word boundary element ‘#’
(since these always match); a and b in turn may not contain the
empty element ‘ ’ (since these never match). In this study the
context length cl of a and b was set to 1, since the amount of
transcribed data in the CLIPS corpus was not enough to derive
statistics about larger contexts. For each resulting PMR the total
number of instances N(a, x, b→ y) in the corpus was counted.

In a second run over the same data we count instances of
the left side of each stored PMR N(a, x, b) in the phonological
stream only. The conditional probability for a rule application
is then calculated as:

P (a, y, b|a, x, b) = N(a, x, b→ y)

N(a, x, b)
(1)

PMRs together with their respective conditional probability and
the absolute count N(a, x, b → y) are then stored into a PMR
set.

Since the annotations as well as the automatic mapping con-
tain errors, a considerable proportion of the learned PMRs do
not represent “real” events but are simply caused by errors. It
is reasonable to expect that these errors are usually not repeated
resulting in exactly the same PMRs (although systematic errors
could theoretically occur, if for instance one human labeler sys-
tematically confuses phonemic symbols). A simple pruning al-
gorithm deletes all PMRs with an absolute count less than a
pruning threshold N(a, x, b → y) < T . The optimal pruning
threshold T depends on the size of the analyzed corpus. For
the CLIPS corpus we varied T = 2 . . . 20 and found T = 4 to
result in the most sensible PMRs.

The above procedure, applied to the CLIPS data set as de-
scribed in Section 2, results in a set of 588 PMRs; as an exam-
ple we list the 8 PMRs with the highest conditional probabilities
learned from the CLIPS corpus:

a,n,g>a,N,g 0.74961
ja,n,k>ja,N,k 0.73531
SS,E,n>SS,e,n 0.70121
#,S,i>#,SS,i 0.70121
a,dZ,i>a,ddZ,i 0.62998
k,o,d>k,O,d 0.59821
#,o,m>#,m 0.48034

we,s,t,i>we,ss,i 0.46082
o,z,E,g>o,s,e,g 0.46082
u,n,g>u,N,g 0.43987

Note here that the conditional probability does not necessar-
ily reflect the usefulness/importance of the learned PMR for the
model; a PMR with a very low conditional probability can nev-
ertheless be useful if the probability for the condition P (a, x, b)
is high. Despite this we observed that in general PMRs with
lower conditional probabilities tended to model more and more
unrealistic replacements; therefore in the following phonologi-
cal analysis we focused on the first 290 PMRs with the highest
conditional probability (approx. half of the set).

The complete PMR set thus derived from the CLIPS corpus
can be downloaded with the MAUS package from the Bavarian
Archive for Speech Signals.4

4www.bas.uni-muenchen.de/Bas/

5. Phonological Discussion
The CLIPS phonetic PHN labels were chosen from a predeter-
mined set that included (along with all the Italian allophones) al-
lophonic variants resulting from coarticulation, known regional
variants, and “unintentional variants” (see [13] for detail). The
PHN transcription also contains diacritics such as glottalization
and nasalization, but as noted earlier we did not consider dia-
critics in this investigation. Note that the PMRs reflect a mis-
match only between phonetic labels and phonological labels. In
this Section we want tease apart the possible explanations e.g.
coarticulation, post-lexical sandhi or speech errors.
We investigated

1. to what extent the PMRs correspond to linguistic de-
scriptions of spoken Italian, which are many, cf. [13]
for references; we also refer in particular to [1, 4], and

2. whether the PMRs can be classified as regional vs. uni-
versal.

Contemporary standard Italian is spoken with distinct regional
accents even in relatively formal contexts by most native speak-
ers (e.g. [4, 13]), and the PMR set within the MAUS tool should
ideally be robust enough to cope with this kind of phonetic vari-
ation.

The 290 PMRs were manually classified into the 12 cate-
gories shown in Table 2 (we classified PMRs where x and y
contained more than one element e.g. d,e,ll,a>d,E,l,a,
in terms of the change affecting the consonant).

Two PMR types were left aside because they are arte-
facts of labeling conventions rather than connected speech pro-
cesses: Nasal assimilation (entirely predictable before homor-
ganic stops in Italian) and Other (mostly involving vowel v.
glide alternations). For each of the remaining 273 individual
PMRs, we also listed the filenames in which they occurred, al-
lowing us to examine regional distribution.

Table 2: Probabilistic micro-rule type statistics

PMR type count frequency of application
V Height 89 1568
V Deletion 48 1321
C Doubling 43 988
C Deletion 29 425
C Voicing 16 331
C De-gemination 15 437
C Lenition 13 216
C Assimilation 10 134
C Devoicing 9 76
C Fortition 1 8
Nasal assimilation 11 444
Other 6 177
Total 290 6125

Vowel deletions and Vowel height are the most common
PMRs in terms of absolute frequency of application and are
common to all cities in the data set (i.e. universal). Most PMRs
involving vowel (and glide e.g. v,ai,#>v,a,#) deletions oc-
curred at word boundaries, as expected for Italian ([4]). Vowel
height changes all involved the mid vowels /E e/ and /o O/; the
wide regional distribution of these PMRs corresponds well with
([1]) which states the merge of [e E] and [o O] in spontaneous
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speech is a non-regional feature. ([1] also identify assimilation
of /rC/>[C:] as a typical non-regional feature of spoken Ital-
ian, but we found no evidence of this particular assimilation in
the PMR set.)

Consonant doubling was frequent in the corpus, but
37 of these 43 PMRs involved word-initial position (e.g.
#,b,a>#,bb,a) likely reflecting the post-lexical sandhi pro-
cess raddoppiamento sintattico (RS) (e.g. [4] p. 135, [11],
[10]) under which certain words trigger word-initial consonant
lengthening e.g. tre [g:]atti ‘three cats’ (with RS) but due
[g]atti ‘two cats’. RS is not learnable for our model because
PMRs are only sensitive to one preceding segment - in this
case a word boundary. In other words the PMRs do not allow
us to distinguish RS from other cases of non-canonical dou-
bling. Other than in word-initial position, PMRs suggest dou-
bling was infrequently transcribed (although it was included in
the closed allophonic set during segmental labeling) and was
rather evenly distributed across regions, which is unexpected
given non-canonical gemination is a southern Italian feature.

Consonant deletions typically affected intervocalic /m n v/
and based on our data can be seen as features of standard Italian
common to all regions (in line with [1]).

PMRs involving Voicing of velar stops in word-initial po-
sition were particularly frequent for data recorded in the south
(e.g. of the 45 occurrences of #,k,e>#,g,e, 15 were from
Palermo and 12 were from Rome). To the best of our knowl-
edge voicing of /k/ in utterance-initial position is not associated
with a particular regional variety and in fact, as noted above, our
PMRs only refer to the immediately preceding segment, i.e. the
word boundary #. The velar stops in question are very likely in
intervocalic position across the word boundary, and voicing of
intervocalic /p t k/ is widespread in centro-southern Italy both
within and across word boundaries (e.g. [8]).

PMRs classified as Consonant De-gemination were also
relatively evenly distributed across cities, the most frequent in-
volving lateral /l/ in articles e.g. a,ll,a>a,l,a which oc-
curred 130 times.

All but two of the PMRs classified as Consonant Lenition
involved de-affrication of /tS/ and /dZ/, which linguistic de-
scriptions ascribe to speakers from Rome, Perugia and Florence
([13, 4]) but we find to be a more widespread tendency in spo-
ken Italian (half the 202 occurrences of these PMRs occurred in
speech recorded in other cities).

Similarly Devoicing of /z/ (e.g. o,z,E,g>o,s,e,g) was
not confined to Roman Italian, as [4], p. 33 reports, and instead
appears to be a more widespread tendency for speakers from
the centre-south (and 4 of 76 cases were found in data from
northern cities).

Eight PMRs classified as Consonant Assimilation involved
[st]>[ss] (e.g. we,s,t,i>we,ss,i) and this rule was
universal, consistent with [1].

PMRs corresponding to Voicing of geminate /ts:/ (associ-
ated with the Milanese accent [4]) and affrication of /s/ after
nasals (associated with Tuscan and Roman [4], listed as For-
tition in Table 2), were found in the speech data but not fre-
quently, and mostly outside of the cities in which we would
expect them to occur.

A well-known regional pronunciation not reflected in the
complete set of 588 PMRs is the gorgia toscana (e.g. [7]). Ex-
pected only for Florence this was likely not detected by our ap-
proach, because diacritics were deleted from the CLIPS tran-
scripts before analysis.

Overall, the PMR set corresponds reasonably well with lin-
guistic descriptions of spoken Italian connected speech pro-

cesses, but their regional distribution is in some cases more
widespread than we would expect based on the descriptive lin-
guistic literature. This unexpected homogeneity in the data sug-
gests that the MAUS tool for Italian should be robust enough
to cope with variation due to regional accents. On the other
hand, the distribution of the PMRs did not reliably distinguish
recordings from individual cities or major linguistic iso-glosses
(e.g. northern varieties with de-gemination vs. centro-southern
varieties with geminates and a tendency towards non-canonical
gemination).

6. Application in MAUS
The HMM-based MAUS tool allows either the simple align-
ment of a phonetic transcript to the speech signal or the usage of
a phonological or statistical (PMR) rule set to create a hypothe-
sis space of possible pronunciations, which is then searched by
a standard Viterbi algorithm (for details about the integration of
acoustic and PMR probabilities into a probabilistic graph see
[16]). MAUS has been shown to perform within the capabili-
ties of human labelers ([15]) for German, for which a PMR set
has been learned from the German Kiel Korpus ([9]). MAUS
has been subsequently adapted to a number of other languages
(currently 10), but until recently only German and Australian
English made use of probabilistic PMR sets.

The PMR set based on the Italian CLIPS corpus as de-
scribed in Section 4 has been incorporated into the current ver-
sion of MAUS. To improve its robustness in new domains in-
cluding different dialects and speaker characteristics, the PMR
set was further reduced to 128 rules (using a pruning threshold
of 20 instead of 4), and the left/right contexts were permuted to
phonetically similar contexts. This results in a final PMR set of
764 rules. The Italian MAUS HMM set (based on an extension
of the official SAMPA Italian phoneme set) was also re-trained
to the manual segmentations in the CLIPS corpus.

At the time of writing no independent benchmark set was
available for Italian to formally evaluate the improvement of
the MAUS labeling and segmentation for Italian speech. An
informal application to read and spontaneous speech from the
non-labeled part of the CLIPS corpus as well as to other Italian
recordings performed at the BAS showed an improvement to
both the phonetic transcript and the segmentation of individual
phones. The Italian module of MAUS was recently incorpo-
rated in the new CLARIN service WebMAUS allowing the user
to apply the MAUS technique to Italian speech recordings via a
web interface, thus avoiding the need to install the MAUS soft-
ware on a local computer. The web interface can be accessed
via “clarin.phonetik.uni-muenchen.de/BASWebServices”.

7. Conclusion
The proposed mixed phonological-technical approach to ana-
lyzing the pronunciation of spontaneous Italian yielded on the
one hand interesting insights into the contemporary application
of well-known phonological processes, and on the other hand a
useful technological resource in the form of a set of machine-
learned probabilistic pronunciation rules. Since the entire anal-
ysis was carried out automatically, the same analysis can be ap-
plied to other languages for which a sufficiently large corpus of
spontaneous speech is available. Our analysis of phonological
processes showed that some phonetic variants were identified
outside the specific regions with which they are associated in
the descriptive literature and in doing so sheds new light on the
contemporary pronunciation of standard Italian.
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