▲□▶ ▲□▶ ▲ Ξ▶ ▲ Ξ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ Ξ ▶ ▲ Ξ ▶ ■ ○ ○ ○ ○

Munich AUtomatic Segmentation (MAUS) Phonemic Segmentation and Labeling using the MAUS Technique

F. Schiel, Chr. Draxler, J. Harrington

Bavarian Archive for Speech Signals Institute of Phonetics and Speech Processing Ludwig-Maximilians-Universität München, Germany

www.bas.uni-muenchen.de info@bas.uni-muenchen.de

<ロト <回ト < 国ト < 国ト = 国

Overview

- Statistical Segmentation and Labeling
- Super Short Introduction to MAUS
- Pronunciation Model : Building the Automaton
- Pronunciation Model : From Automaton to Markov Model
- Evaluation of Segmentation and Labeling
- Software Package MAUS

・ロット (雪) (日) (日)

Statistical Segmentation and Labeling

Let Ψ be all possible Segmentation & Labeling (S&L) for a given utterance.

Then the search for best S&L \hat{K} is:

$$\hat{K} = \operatorname{argmax}_{K \in \Psi} P(K|o) = \operatorname{argmax}_{K \in \Psi} \frac{P(K)p(o|K)}{p(o)}$$

with *o* the acoustic observation of the signal. Since p(o) = const for all *K* this simplifies to:

$$\hat{K} = \operatorname{argmax}_{K \in \Psi} P(K) p(o|K)$$

with:

P(K) = apriori probability for a label sequence, p(o|K) = the acoustical probability of *o* given *K* (often modeled by a concatenation of HMMs)

Statistical Segmentation and Labeling

S&L approaches differ in creating Ψ and modeling P(K)

For example: forced alignment

$$||\Psi|| = 1$$
 and $P(K) = 1$

hence only p(o|K) is maximized.

Other ways to model Ψ and P(K):

- phonological rules resulting in *M* variants with $P(K) = \frac{1}{M}$
- phonotactic n-grams
- lexicon of pronunciation variants
- Markov process (MAUS)

Short Introduction to MAUS

Short Introduction to MAUS

Building the Automaton From Automaton to Markov Process From Markov Process to Hidden Markov Model

Building the Automaton

Start with the orthographic transcript: heute Abend

By applying lexicon-lookup and/or a test-to-phoneme algorithm produce a (more or less standardized) citation form in SAM-PA: hOYt@ ?a:b@nt

Add word boundary symbols #, form a linear automaton \mathcal{G}_c :

$$\textcircled{\bullet} \xrightarrow{} (h) \xrightarrow{} (t) \xrightarrow{} (t)$$

・ロット (雪) ・ (日) ・ (日)

Building the Automaton

Software Package MAUS

Building the Automaton

Extend automaton \mathcal{G}_c by applying a set of substitution rules q_k where each $q_k = (a, b, l, r)$ with

- a : pattern string
- b : replacement string
- I : left context string
- r : right context string

For example the rules (/@n/,/m/,/b/,/t) and (/b@n/,/m/,/a:/,/t/)generate the reduced/assimilated pronunciation forms /?a:bmt/ and /?a:mt/ from the canonical pronunciation /?a:b@nt/ (evening)

ъ

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Building the Automaton From Automaton to Markov Process From Markov Process to Hidden Markov Model

(日)

Building the Automaton

Applying the two rules to \mathcal{G}_c results in the automaton:

Building the Automaton From Automaton to Markov Process From Markov Process to Hidden Markov Model

From Automaton to Markov Process

Add transition probabilities to the arcs of $\mathcal{G}(N, A)$

 Case 1 : all paths through G(N, A) are of equal probability Not trivial since paths can have different lengths! Transition probability from node d_i to node d_i:

$${f P}(d_j|d_i) = rac{{f P}(d_j){f N}(d_i)}{{f P}(d_i){f N}(d_j)}$$

 $N(d_i)$: number of paths ending in node d_i $P(d_i)$: probability that node d_i is part of a path

 $N(d_i)$ and $P(d_i)$ can be calculated recursively through $\mathcal{G}(N, A)$ (see Kipp, 1998 for details).

・ ロ ト ・ 雪 ト ・ 目 ト ・

Building the Automaton From Automaton to Markov Process From Markov Process to Hidden Markov Model

From Automaton to Markov Process

Example: Markov process with 4 possible paths of different length

Total probabilities:

(日)

Building the Automaton From Automaton to Markov Process From Markov Process to Hidden Markov Model

From Automaton to Markov Process

 Case 2 : all paths through G(N, A) have a probability according to the individual rule probabilities along the path through G(N, A)

Again not trivial, since contexts of different rule applications may overlap! This may cause total branching probabilities > 1

Please refer to Kipp, 1998 for details to calculate correct transition probabilities.

Building the Automaton From Automaton to Markov Process From Markov Process to Hidden Markov Model

(日)

From Markov Process to Hidden Markov Model

True HMM : add emission probabilities to nodes N of \mathcal{G}_c .

-> Replace the phonemic symbols in *N* by mono-phone HMM. The search lattice for previous example:

Building the Automaton From Automaton to Markov Process From Markov Process to Hidden Markov Model

(日)

From Markov Process to Hidden Markov Model

Word boundary nodes '#' are replaced by a optional silence model:

Possible silence intervals between words can be modeled.

Evaluation of Label Sequence Evaluation of Segmentation

Evaluation of Segmentation and Labeling

How to evaluate a S&L system?

Required: reference corpus with hand-crafted S&L ('gold standard').

Usually two steps:

- Evaluate the accuracy of the label sequence (transcript)
- ② Evaluate the accuracy of segment boundaries

A B > A B > A B >

Evaluation of Label Sequence Evaluation of Segmentation

Evaluation of Label Sequence

Often used for label sequence evaluation: Cohen's κ

 κ = amount of overlap between two transcripts (system vs. gold standard); independent of the symbol set size (*Cohen 1960*).

We consider κ not appropriate for S&L evaluation, since

- no gold standard exists in phonemic S&L
- different symbol set sizes do not matter in S&L
- the task difficulty is not considered (e.g. read vs. spontaneous speech)

・ロット (雪) ・ (日) ・ (日)

Evaluation of Label Sequence Evaluation of Segmentation

Evaluation of Label Sequence

Proposal: *Relative Symmetric Accuracy (RSA)* = = the ratio from average symmetric system-to-labeler agreement \widehat{SA}_{hs} to average inter-labeler agreement \widehat{SA}_{hh} .

$$RSA = rac{\widehat{SA}_{hs}}{\widehat{SA}_{hh}}100\%$$

・ロット (雪) (日) (日)

Evaluation of Label Sequence Evaluation of Segmentation

Evaluation of Label Sequence

German MAUS:

- 3 human labelers
- spontaneous speech (Verbmobil)
- 9587 phonemic segments

Average system - labeler agreement Average inter - labeler agreement Relative symmetric accurarcy $\widehat{SA}_{hs} = 81.85\%$ $\widehat{SA}_{hh} = 84.01\%$ RSA = 97.43%

・ ロ ト ・ 雪 ト ・ 目 ト ・

Evaluation of Label Sequence Evaluation of Segmentation

Evaluation of Segmentation

- No standardized methodology
- Problem: insertions and deletions
- Solution: compare only matching segments
- Often: count boundary deviations greater than threshold (e.g. 20msec) as errors
- Better: deviation histogram measured against all human segmenters

・ ロ ト ・ 雪 ト ・ 目 ト ・

Evaluation of Label Sequence Evaluation of Segmentation

Evaluation of Segmentation

German MAUS:

Note: center shift typical for HMM alignment

(日)

Software Package MAUS

MAUS software package:

ftp://ftp.bas.uni-muenchen.de/pub/BAS/SOFTW/MAUS

MAUS requires

- UNIX System V or cygwin
- Gnu C compiler
- HTK (University of Cambridge)

Current language support: German, English, Hungarian, Icelandic, Estonian, Portuguese, Spanish

A MAUS web services is currently in alpha. If interested in a demo, please contact me after the talk.

References

- Kipp A (1998): Automatische Segmentierung und Etikettierung von Spontansprache. Doctoral Thesis, Technical University Munich.
- Wester M, Kessens J M, Strik H (1998): Improving the performance of a Dutch CSR by modeling pronunciation variation. Workshop on Modeling Pronunciation Variation, Rolduc, Netherlands, pp. 145-150.
- Kipp A, Wesenick M B, Schiel F (1996): Automatic Detection and Segmentation of Pronunciation Variants in German Speech Corpora. Proceedings of the ICSLP, Philadelphia, pp. 106-109.
- Schiel F (1999) Automatic Phonetic Transcription of Non-Prompted Speech. Proceedings of the ICPhS, San Francisco, August 1999. pp. 607-610.
- MAUS: ftp://ftp.bas.uni-muenchen.de/pub/BAS/SOFTW/MAUS
- Draxler Chr, Jänsch K (2008): WikiSpeech A Content Management System for Speech Databases. Proceedings of Interspeech Brisbane, Australia, pp. 1646-1649.
- CLARIN: http://www.clarin.eu/
- Cohen J (1960): A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20 (1): 37-46.
- Fleiss J L (1971): Measuring nominal scale agreement among many raters. Psychological Bulletin, Vol. 76, No. 5 pp. 378-382.
- Burger S, Weilhammer K, Schiel F, Tillmann H G (2000): Verbmobil Data Collection and Annotation. In: Verbmobil: Foundations Speech-to-Speech Translation (Ed. Wahlster W), Springer, Berlin, Heidelberg.
- Schiel F, Heinrich Chr, Barfüßer S (2011): Alcohol Language Corpus. Language Resources and Evaluation, Springer, Berlin, Ne York, in print.

Software Package MAUS

How to adapt MAUS to a new language?

Several possible ways (in ascending performance and effort):

 Define a mapping from the phoneme set of the new language to the German set (or any other available language in MAUS). Constrain pronunciation to canonical form.

Effort: nil

Performance: for some languages surprisingly good.

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Software Package MAUS

 Hand craft pronunciation rules (depending on language not more than 10-20) and run MAUS in the 'manual rule set' mode.

Effort: small

Performance: Very much dependent of the language, the type of speech, the speakers etc.

 Adapt HMM to a corpus of the new language using an iterative training schema (script maus.iter). Corpus does not need to be annotated.

Effort: moderate (if corpus is available)

Performance: For most languages very good, depending on the adaptation corpus (size, quality, match to target language etc.)

Software Package MAUS

 Retrieve statistically weighted pronunciation rules from a corpus. The corpus needs to be at least of 1 hour length and segmented/labeled manually. *Effort:* high. *Performance:* Unknown.

・ ロ ト ・ 雪 ト ・ ヨ ト ・