The BAS Repository

1 Architecture and software requirements
The BAS repository architecture is based on a file system and consists of the following components:

e a public sector containing the landing pages and the metadata (CMDI files ISO 24622-1,') of stored
corpora and corpus sessions. The PHP landing pages are generated dynamically from the CMDI files,

e a limited-access sector containing the primary data. This area can be accessed by authorized users
after Shibboleth authentification,

e an OAI-PMH endpoint providing metadata in CMDI (ISO 24622-1) and Dublin Core format,

http:/ /www.phonetik.uni-muenchen.de/cgi-bin/BASRepository/oaipmh/oai.pl?verb=Identify
e a user search SQLite database and interface.

The repository software is written in Perl and PHP. It requires a web server which is capable to run CGI
and PHP scripts, an SQLite database, as well as tools for xml validation (xmllint), metadata transformation
(xsltproc), and checksum calculation (md5sum). We use the OAI-PMH2 XMLFile File-based Data Provider.

2 Data access

The landing pages of corpora and corpus sessions can be accessed without authentification:

e by the respective URL:
hitps: //clarin.phonetik.uni-muenchen.de /BASRepository/Public/Corpora/ALC/ALC. 1.php

e by the handle PID pointing to this URL
hitp://hdl.handle.net/11858,/00-1779-0000-0006-BDA 1-5

The metadata can be accessed by humans or machines without authentification:

e adding the part identifier @format=cmdi, @format=dc, or @format=olac to the handle PID
http://hdl.handle.net/11858/00-1779-0000-0006-BDA 1-5@format=cmdi

e using the Get parameter ?format=cmdi, ?format=dc, or ?format=olac,
https://clarin.phonetik.uni-muenchen.de/BASRepository/Public/Corpora/ALC/ses1006.1.php ?format=cmdi

The Dublin core (dc) and OLAC format are generated from the CMDI format via xslt. OLAC is
available for corpora only, not for single corpus sessions.

e by means of content negotiation. The the accept header has to contain the pattern application/z-
cmdi+xml

wget —header="Accept: application/z-cmdi+zml’ http://hdl.handle.net/11858/00-1779-0000-0006-BDA1-5

e via the metadata URL field of the verbose handle,

'www.iso.org/obp/ui/#iso:std:is0:24622:-1:ed-1:v1:en



handle.gwdg.de:8080/pidservice/read/view?pid=11858/00-1779-0000-0006- BDA 2-36metadata=1

The primary data can be accessed after successful authentification by humans or machines in different
ways:

e via the resource links on the dynamically generated landing pages,
e via the EPIC Handle PID system by a part identifier: @partID= myResourceProzyld,
http://hdl.handle.net/11858,/00-1779-0000-0006- BDA 2-8@partId=m_0000000001

e using the Get parameter ?partID=myResourceProxyld, whereat myResourceProxyld is the id attribute
value of the corresponding ResourceProxy element in the CMDI file.

https://clarin.phonetik.uni-muenchen.de/BASRepository/Public/Corpora/ALC/ses1006.1.php ?partld=m_0000000001

3 Ingest procedure

The automatic ingest procedure of a new corpus is implemented in Perl and is directed by a single configu-
ration file specifying repository locations, template files, and xslt stylesheets. The user only has to provide
the location of the corpus CMDI file. The procedure consists of the following steps:

1. The corpus and each of its sessions is represented by a CMDI file. The files are validated against their
profiles, and the resource links are tested.

2. For the corpus, its sessions and all primary data files repository IDs (RID) are derived from the CMDI
files. An RID is shared by all versions of a resource. Thus, it serves to compare already stored and
incoming data in order to trigger update steps if necessary (see below).

3. For the corpus and its sessions EPIC handle Verbose PIDs are requested using curl. Generally, a PID
is assigned to each version of a corpus and a session.

4. The CMDI files are copied to the public repository sector and updated, i.e. PIDs are inserted and
resource links are modified. The primary data is copied to the limited-access sector.

5. A repository content table (RCT) is generated that stores locations, IDs, checksums and isPartOf
relations for all items of a corpus. This table serves for regular checksum consistency checks, resource
updates, and can be used for repository rebuilds.

6. The repository search database and its interface are updated.
7. At the OAI-PMH endpoint, the Perl Storable object containing the metadata information is updated.

In case a version of an incoming corpus or session CMDI is already stored in the repository, it is tested
whether in the new CMDI primary data is deleted, inserted or substituted (by checksum comparison with
the corresponding RCT entry). If yes, a new version of the primary data and all its parent objects is inserted,
new PIDs are required for the new corpus and session versions, and the RCT is updated accordingly.

4 PID: Granularity and Usage

EPIC Handle PIDs are assigned on the corpus and recording session level. One PID is assigned to each
corpus and session version, thus each new ingest as well as each corpus or session update is marked by a new
PID. Ressources that belong to these repository objects can be addressed by part identifiers as described in
section 2. The PIDs can be accessed by humans and machines by reading out the ID element of the corpus
CMDI files, and the PID element of the session CMDI files. The CMDI file access is introduced in section
2. Furthermore, the PIDs are displayed in the Metadata section of the repository object’s landing page.



