Generic Methods for TTS Synthesis

Yasser Hifny

(PhD student, Sheffield university)

y.hifny@dcs.shef.ac.uk

MSc. (2000), B.Sc. (1995), Elec. & Comm. Engineering, Cairo Univ., Egypt.

Outline

- State of the Art
- Prosody modeling.
- Synthesis by Selection.
- Large Database production.
- Practical considerations.
- Obstacles for high quality.

State of The Art Methods

Aims of State of The Art TTS

- Concatenative synthesizer.
- Large Database.
- Statistical prosody modeling.
- Runtime unit selection(synthesis by selection).
- Support for Prosodic modification/spectral smoothing methods.
 Database is shared between all

components, How?

Statistical Prosody Modeling

Corpus based approaches are large database:

- Prediction of Intonation contour.
- Prediction of Segment Durations.
- Prediction of average energy of Energy.

Phonological description

Phonolog y Level	Feature Description	Feature count	Value range
Phoneme	Sound Type	11	1 to 13
	Voicing Type	11	1 to 5
	Consonant Type	11	1 to 9
	Type Of Articulation	11	1 to 13
	Place Of Articulation	11	1 to 15
	PhonemeID	11	0 to 41
	FuzzyEmpatic	11	0 to 1
	EmphaticType	11	0 to 1
	Shadda	11	0 to 1
Syllable	Syllablen Position (SP)	11	ð to 4
U C	Syllable Position (SN)	1	2 to 4
	Accent Degree (AC)		0 to 4
Foot	FP Position (FP)	1	1 to 10
	FN Position (FN)	1	1 to 10
Phrase	Phrase Position (PO)	1	0 to 3

Phonological feature description

Duration Modeling problem

Intonation Modeling problem

Phonology to acoustical mapping

Neural network transformation model (ArabTalk)

Synthesis by Selection

Corpus generation, is time consuming?

How to Align a large Database? Forced Alignment

Practical considerations (Acoustic)

- Tri-phones Speaker Independent Models(if available).
- Speaker Dependent Models(SDM).
- Incremental training +SDM. implementation

ArabTalk

- Automatic corrections tools (HMM consistent errors).
- Manual Corrections (Why!).
- Male voices seems to work better(ArabTalk).

Practical considerations (Text)

- Domain based Text.
- Closed loop phonetic transcription(assimilation).
- Domain Coverage (How to estimate?)
- Prosodic markers for speech recording(should be considered or not?).

Practical considerations (Pitch processing)

implementation

TD–PSOLA is the most efficient & cheapest prosodic modification method: ArabTalk

- EGG signal recording versus tracking algorithms.
- Pitch synchronous analysis versus fixed frame rate.
- Prediction of the pitch contour from the text.

The Alignment Output

RDI ArabTalk aligned sentence

Obstacles for High Quality

- # of concatenation points(format discontinuity).
- Are longer units can solve the concatenative approach limitations?
- Prosodic modification (affect natural speech).
- Lack of objective evaluations.
- Closed domains versus open domain.

Good luck BITS

Last minute, what else we need?

Patience! It will not work as ALL speech research ©. BELIEVE ME!

Acknowledgment

- **BITS** organizers who made my visit possible.
- RDI ArabTalk is an implementation for Arabic Text To Speech system. Thanks to RDI research lab members. The author was the speech department manager and ArabTalk project manager during (2000–2002).