
Documentation of MASV
Munich Automatic Speaker Verification system

Documentation version 1.3.00 (16.02.2004)
Release 1.3 (16.02.2004)

Ulrich Türk

tuerk@phonetik.uni-muenchen.de

Department of Phonetics and Speech Communication
University Munich, Schellingstr. 3, D-80799 München, Germany
http://www.phonetik.uni-muenchen.de

http://www.phonetik.uni-muenchen.de

2

Copyright c© 2001-2004 Ulrich Türk. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled
”GNU Free Documentation License”.

Contents

1 General information 4
1.1 Overview . 4
1.2 Notation . 4
1.3 Changes . 5

2 Requirements 6

3 Installation 7
3.1 Unpacking and installing . 7

3.1.1 Perl scripts . 7
3.1.2 Matlab scripts . 8

3.2 Additional setup . 9
3.2.1 Setting up the hosts list . 9
3.2.2 Adapting database specific functions . 9

4 System description 11

5 Setting up and running SV systems 13
5.1 Creating parameter pools . 13
5.2 Creating SV systems . 13
5.3 Creating HMM prototyes . 14
5.4 Creating experiments . 14
5.5 Description of the experiment config files . 15
5.6 Running experiments . 17

6 Analyzing results 18
6.1 Matlab functions for data processing and evaluation . 18

6.1.1 Creating and saving results . 19
6.1.2 Creating score results . 20
6.1.3 Interface between MASV’s Perl part and Matlab part 21

6.2 GUI for data exploration . 22

7 Description of the perl tools 25
7.1 Common options . 25
7.2 Recording configuration . 25
7.3 High-Level-Tools . 25

7.3.1 create MASV paramPool.pl . 25
7.3.2 run HCopy.pl . 26
7.3.3 create MASV sv system.pl . 26
7.3.4 check MASV experiment.pl . 27
7.3.5 calc size MASV experiment.pl . 27
7.3.6 run MASV experiment.pl . 27
7.3.7 make clean MASV experiment.pl . 28
7.3.8 loop thru speakersets.pl . 28

7.4 Low-Level-Tools . 29
7.4.1 run HTKCommand.pl . 29

3

4 CONTENTS

7.4.2 run HCompV.pl . 29
7.4.3 run HInit.pl . 30
7.4.4 run HERest.pl . 30
7.4.5 run HVite.pl . 31
7.4.6 run worldModelTest.pl . 32

7.5 Other tools . 33
7.5.1 calc GMM world llh.pl . 33
7.5.2 get bestWorldModel GMM.pl . 33
7.5.3 get bestWorldModel.pl . 33
7.5.4 change entry transitions to tee.pl . 34
7.5.5 loop thru speakersets.pl . 34
7.5.6 message2log.pl . 34
7.5.7 raw2wav.pl . 34
7.5.8 split file lists.pl . 34
7.5.9 create difference list.sh . 35
7.5.10 switch MASV spk data set.pl . 35

8 Description of the Matlab tools 36

A GNU Free Documentation License 37
1. APPLICABILITY AND DEFINITIONS . 37
2. VERBATIM COPYING . 38
3. COPYING IN QUANTITY . 38
4. MODIFICATIONS . 39
5. COMBINING DOCUMENTS . 40
6. COLLECTIONS OF DOCUMENTS . 40
7. AGGREGATION WITH INDEPENDENT WORKS . 40
8. TRANSLATION . 41
9. TERMINATION . 41
10. FUTURE REVISIONS OF THIS LICENSE . 41
ADDENDUM: How to use this License for your documents . 41

Chapter 1

General information

1.1 Overview

MASV stands for ”Munich Automatic Speaker Verification”. It is an experiment environment for per-
forming speaker verification (SV) that allows easy set up of SV systems using different kinds of models
including sub-word-model HMMs and GMMs. Different commonly used types of score normalizations
are available: world normalization, simple cohort normalization (mean score of n-best cohort speakers or
maximum score of cohort speakers) and handset normalization (h-norm).
It comprises two parts: a Perl script part (based on the HTK tools) which handles training and testing
of the system and a Matlab script part, which performs evaluation and performance measurement of the
trained system. Information transfer from the Perl part to the Matlab part takes place by simple text
files (MLF files of HTK, simple configuration files with lists of speakers used for training, no. of iterations
for a model, etc.).
The whole system is developed for the German VeriDat Speaker Verification database and the general file
structure of this database must be taken over when using other datases. The adaptation process is now
facilitated as all database specific functions and documentation files are packed into an own directory.
Unfortunately the VeriDat database is not freely available. In order to help you getting started there
is a dummy database for download: it contains only the label files of one of the speakers and empty
speech data files. This should give you some idea about the structure and should help you in adapting
the system to your own databases.
Please note that there are many things to improve and I would appreciate any kind of comments and
advises for further improvement!
The latest version of MASV-package and also of this document is available from
http://www.phonetik.uni-muenchen.de/Bas/SV.

1.2 Notation

In the following descriptions, all references to programs, command line entries, paths, filenames and
values of parameters are set in a monospace style.
After installation, a set of environment variables is defined which can be accessed in the shell. They are
also used for notating paths in this document. These values are referred by ENV::nameOfTheVariable,
where nameOfTheVariable is replaced by a selected name of the environment variables.
Some directories are common for all SV systems designed with MASV. These are referred to with the
relative path starting in the so-called base directory ENV::MASV BASEDIR. E.g. the directory hmm lists
there is referred to by just notating hmm lists/.
If a part of a command string uses a value of a variable, the value is enclosed by < and >. E.g. if a tool
takes the parameter pool name and a filename consists of C followed by the value of the parameter, the
notation is C <pool name>. The value <sv system path> has a special meaning which refers to the
path of current SV system (most of the tools take the name of the SV system as a required parameter).

5

http://www.phonetik.uni-muenchen.de/Bas/SV

6 CHAPTER 1. GENERAL INFORMATION

1.3 Changes

Changes in 1.3

• cleared up terminology: the previously called ”experiment” is now called a ”SV system”, the ”sub
experiments” are now called ”experiments”.

• matlab result files need about half the disc space now (converted the rec info field now from a
string cell array to a normal string array).

• introduced concept of ”database description”, making adapting to other databases more easier.

Changes in 1.2

• included documentation.

• reorganized and cleaned up the code.

• better handling of environment variables; more tuning via these variables possible (verbose level,
nice factor, ...)

Changes in 1.1

• first public release

Chapter 2

Requirements

MASV needs Perl of version 5 or higher and Matlab (version 5 or higher). Some parts of the code may run
only on UNIX compatible operation systems. Many things are already handled by Perl (path delimiter
sign, environment variables, etc.) but there are still many calls to UNIX commands like e.g. ssh, cp,
ln. Be aware that you may encounter problems when trying to run the system in a non-UNIX flavoured
environment.
The Perl part of MASV uses the package Parallel::ForkManager made by Balázs Szabó. You can use
the module file provided with the MASV tar ball or download it from CPAN (http://www.cpan.org).
All shell scripts use the Bash shell, so please make sure that it is installed on your system.
Some rarely used tools require the SoX package (available from http://sox.sourceforge.net).
MASV uses HTK (http://htk.eng.cam.ac.uk) for training and testing the modules. It is developed
to work with version 3.1 of the HTK tools but newer version should be fine. There are some patches
available (see the instructions on the MASV home page) which arose from the development of MASV.
You should at least install the patch for the HTK command HHEd that provides a new mechanism for
splitting mixtures in a HMM model.
There are two Matlab packages for MASV (voicebox by Mike Brookes and matdraw by Keith
Rogers) which are used by some functions of the Matlab part of MASV. The matdraw pack-
age was slightly extended. You can download the archive from the MASV home page
(http://www.phonetik.uni-muenchen.de/Bas/SV). The installation is quite similar to the procedure
described in 3.1.2. Please make sure that the directories of both packages are in your Matlab path!

7

http://www.cpan.org
http://sox.sourceforge.net
http://htk.eng.cam.ac.uk
http://www.phonetik.uni-muenchen.de/Bas/SV

Chapter 3

Installation

The installation consists of two main steps:

• Unpacking and installing the scripts and Matlab files.

• Setting up some environment variables e.g. in your rc files of your home directory when you are on
a UNIX compatible system.

3.1 Unpacking and installing

3.1.1 Perl scripts

1. Unpack the archive in a temporary directory:

tar -xzf MASV_1.3.tgz

2. Move the directory MASV pl/ to a place suitable for you. This directory contains the Perl scripts
of MASV. Make sure, that this new location in your PATH environment variable (modify it e.g. in
your .profile or .bashrc when your are on a UNIX compatible system).

3. Copy the content of the file env.linux to your rc files. E.g. on UNIX systems with bash as shell
paste the content to the end of your .profile or .bashrc in your home directory. The settings
will be completed in the next steps; to give you some idea, the settings on our machine are included
in the comments.

4. Set up the environment variable named MASV PERL ROOT with the directory of your Perl scripts
directory.

5. Make sure that you have the Perl modul ForkManager installed. You can either install it using the
CPAN shell of Perl or you just copy the directory Parallel/ from the unpacked archive to your
directory with the Perl scripts (ENV::MASV PERL ROOT). The module is required even if you don’t
use the parallel computing feature.

6. make sure that your Perl installation has the following modules:

• Pod::Usage

• Getopt::Long

These are normally installed by default.

7. Download the archive dummy HTK Rel-1.3.tgz archive and unpack it, where you want to store the
data of your SV systems. My directory e.g. is called HTK/ (instead of dummy HTK/). Set up the
environment variable MASV BASEDIR pointing to the recently created directory.

8

3.1. UNPACKING AND INSTALLING 9

8. Create a directory in <ENV::MASV BASEDIR>database desc/) and name it according your
database. It contains a Perl module and some Matlab functions which are specific for the database.
You can create several directories there, for each of your databases one. Move the Perl module
MASV db desc.pm from the directory <ENV::MASV PERL ROOT> to your database specific directory
or directories. We will later see, how to adapt the Perl module.

9. Set up the remaining environment variables:

• MASV PERL HTKBIN: path to your HTK Tools binaries

• MASV SOURCE DATABASE: path to your database directory (or to the dummy Veridat directory,
if you want to test it).

• MASV PARAMPOOL DIR: path to your directory containing the parameter pools (create a directory
yourself on a fast device, especially if you use the parallel computation feature!).

• MASV MATLAB HOME DIR: path to your personal Matlab directory (normally matlab/ in your
home directory).

• MASV MATLAB HOST: hostname of machine doing Matlab computations (for large experiments a
machine with 512MB and more memory is recommended); localhost can also be used.

• MASV MATLAB RESULTSDIR: path to a directory for storing result files generated by Matlab.

• MASV HOSTLIST: path to file with list of hosts for computation (see 3.2.1).

• MASV HOST INFOS: path to file with speed information about the hosts.

• MASV NICE FACTOR: nice level for processes during parallel computation.

• MASV VERBOSE LEVEL: verbose level for the Perl tools (0: quiet, 1:some information, 2: print
HTK tool calls).

• MASV DATABASE DESCRIPTION: path to a database specific directory in
<ENV::MASV BASEDIR>database desc/.

10. To test the configuration, reload your rc-files (e.g. in the bash, type ”source /.bashrc”) and
simply call one of the tools without any pathname (e.g. type ”run HCompV.pl”). You should see
the help text of the tool.

3.1.2 Matlab scripts

1. Move the directory MASV m to place where you normally have all your Matlab m-files (usually in
/matlab/M files/). Add this directory (and also, very important, all subdirectories except for
MASV db dep/) to your Matlab path. On UNIX systems, you may prefer to adapt your startup.m
file and add lines like e.g.

path(path,’/homes/tuerk/matlab/M_files/MASV_m/’);

2. Please make sure that in your Matlab path, the directory voicebox mod/ is before the original
directory of the voicebox package. This ensures, that the extended version of the function readhtk
is used.

3. Move all four Matlab functions in the directory MASV db dep/ of MASV m/ to the database specific
directory (or directories) that you created in step 8 in 3.1.1.

4. Make sure that you have created your Matlab directory to which ENV::MASV MATLAB HOME DIR is
pointing to (if it is not already there).

5. In case that you don’t work with the VeriDat database, you can download a dummy data base
(dummy VD.tgz). Put this directory where you want to store the speech data (in this case: pseudo-
speech data). Make sure, that ENV::MASV SOURCE DATABASE is pointing to this directory.

10 CHAPTER 3. INSTALLATION

3.2 Additional setup

3.2.1 Setting up the hosts list

• create a simple text file with the host names of all your machines available for parallel computing;
one host name in each line. Make sure that ENV::MASV HOSTLIST is pointing to this file.

• make a copy of the first file and append the speed of each machine (bogo mips, available under
Linux from the file /proc/cpuinfo), seperated by white space (tab, or space).

3.2.2 Adapting database specific functions

Handling of the format of the speech data and the label data is done via a collection of Perl subroutines
and Matlab functions in the directories in database desc. After installation, these functions are by
default adapted to the VeriDat database. Change them to according to your database.

Common file structure

As already mentioned the structure the VeriDat database is used as guideline for the databases used with
the MASV environment. You have to adopt your databases to the following characteristics:

• Each speaker performs the same number of sessions.

• The same session number of all speakers corresponds to the same defined recording setup like e.g.
environment (quiet, noisy) or handset type.

• The label and audio files use the same file name basis (eight characters) and a distinctive file
extension (three characters). Base file name and extension are seperated with a dot (“.”).

• The last two characters of the base file name specify the recording (type of item, repetition counter
in the session).

Perl module MASV db desc.pm

This Perl module contains three subroutines and several constants used in the Perl tools.
Subroutines:

• get SessionsListName
This function translates the session part of a recording configuration (part after the slash) to a
name of a script file in a speaker’s directory. The default functions defines several two-letter codes
which are aliases to often used script files. The function must return a string with the name of the
script file.

• read db label
This function reads the a label file and returns two references to arrays: one containing the prompted
words, one the labeling of the utterances. These arrays are further processed later with the following
function.

• convert prompt string
In case that you are using subword models (not a GMM recognizer), the prompt labels have to
be split into subwords when generation the MLF files containing the prompts. This function takes
a string (as prompted) and converts it to sub words. An additional function (writeOutNumbers)
converts digits to expanded number words. The subwords are stored in an array whose reference is
returned.

• convert label string
This subroutine takes a string (the transcription of a utterance) and converts to a string with all
words seperated by newlines. The result is pasted to the MLF files containing the transcription.

Variables:

3.2. ADDITIONAL SETUP 11

• audio type
define a type which will be by run HCopy.pl and the Matlab function play sound file.m

• sampling freq
set here the sampling frequency in Hertz

• label file ext
set the file extension of your label files here.

• audio file ext
set the file extension of your audio files here.

• sessions lists
define several subsets of your sessions (e.g. specifying the recording environments). These lists can
be used to perform a hnorm normalization or evaluate performance on subsets of the recordings.
The labels (i.e. the key names) of this hash and the two hashes described in the next paragraph
are used by the environment lists of the Perl tool create MASV sv system.pl. Define at least the
label all for the three hashes.

• training sessions lists, evaluate sessions lists
define here various subsets of sessions. There must be a corresponding set of test (evaluation)
sessions for a defined training sessions set.

• all sessions
define in here all sessions of a speaker.

Several comments in the file indicate the part which is also read by the Matlab functions.

Matlab functions

• get model translation.m
the model names are stored in the Matlab result files by integer codes (one byte, range 0 to 255).
The mapping of the model name, an associated color for drawing the segmentation and the integer
code is stored in this file.

• get sessions 4 hnorm type.m
this function returns a cell array with two lists of sessions for a given split type for performing hnorm
normalization. The hnorm type is defined here, the name of the sesssions subsets are defined in
MASV db desc.pm.

• play sound file.m
converts a soundfile according to its type and plays it. Optionally only a part of the file can be
played (given by a time struct, which specifies start and end time in seconds).

• read label file.m
reads a label file a returns a string of the prompted text and a string of the labeled utterance.

Chapter 4

System description

As mentioned in the first chapter, the MASV system comes in two parts. The first part is a collection of
Perl scripts which act as wrapper script for several HTK command line tools. These scripts are used to
create a setup for a selected type of speaker verification system (SV system), train the necessary models
and test the system. The result at the end of this process is a collection of MLF files and some information
files about the training/testing process (called ”info files” in this documentation). There are two kinds of
Perl tools: the high level tools which allow an easy configuration of a SV system and the low level tools
which are called by the shell script generated by the high level tools.
The high level part provides some predefined types of SV systems which can be easily configured. If you
like to create your genuine SV design you can either tweak the shell scripts or create your own sequence
of low level tool calls.
The low level part consists of several wrapper scripts for the HTK tools. Beside preparing options and
script files for the HTK commands, they provide the mechanism for parallel computing on several hosts,
if appropriate.
The second part of MASV is a bunch of Matlab functions. Some of the high level functions perform
further processing of the data produced in the first step. Here the MLF files and the info files are read
and the performance of the system is computed. The final results are stored in a special Matlab data
type, a structure, which is stored in a file. In fact, there are three different types of structures for the
tests of the designed SV system with varying level of detail.
The interface between the Perl part and the Matlab part is described in more detail in 6.1.3.
The common way for running experiments is (after installation of the system):

1. Prepare the database and create one (or more, if desired) parameter pools. The param-
eter pools store the features extracted from the speech material which are later used to
train models (individual models for each registered speaker but also models for normal-
ization techniques). create MASV paramPool.pl is the tool designed for generating the
directory structure of a parameter pool and run HCopy.pl is used to perform the feature
extraction.

2. Set up a so-called ”SV system”. This is a kind of a complete entity were different setups
of a SV system can be tested and evaluated. It is possible to have only one SV system
(which means also having only one SV system directory), but if you like to prepare
and test a setup while another SV system is currently running, you might want to use
more than one SV system. Note that especially if you do not use the feature of parallel
computing the SV systems on several machines, you will have quite long processing times
(up to some thousand minutes depending on your amount of speech data and the speed
of your machine). The tool designed for this step is create MASV sv system.pl.
Each SV system has two attributes: the associated parameter pool and the selected
speaker set (describing the partitioning of speakers to different sets (registered speakers,
impostor speakers, speakers for world model, cohort speakers, ...). These attributes apply
to all scripts running in the context of an exeperiment and can be easily changed with
the tool switch MASV speaker data set.pl.

3. Create a smaller unit inside the SV system, a so-called ”experiment”. Only one ex-
periment can run at the time within a SV system. The configuration of such an

12

13

experiment is facilitated by a text based configuration file, the experiment configura-
tion (abbrev. expConf). In an experiment all relevant parameters for setting up a
certain SV system, selection of training and testing material are stored within a sin-
gle configuration file. This expConf file can be used by several tools which allow to
check the consistency of the parameters (check MASV experiment.pl), calculate the
size (calc size MASV experiment.pl), create a shell script for performing the whole
process from training to the evaluation (run MASV experiment.pl) and clean temporary
files after evaluation (make clean MASV experiment.pl).

4. If desired, make additional changes to the shell script like adding extra options to the
tool calls.

5. Finally the designed SV system is started by firing up the shell script created from an
expConf file.

6. After processing the results can be analyzed with the provided Matlab tools (mainly by
the function Plot SR parameters).

The main features of the system are

• all HMM types (including GMM) provided by HTK can be used.

• speaker lists allow easy selection of different speaker sets sets (e.g. registered speakers, impostor
speakers, speakers for world model, etc.).

• parameter pool can be changed easily.

• easy selection of the speech material used for training and testing.

• various possibilities of seeding the models before training.

• predefined types of modelling (HMMs based on word/subwords or GMMs)

• predefined ways of score normalization (world model, cohort speakers, handset normalization (h-
norm)).

• option to split speech material for training seperate models and testing under matched / mismatched
conditions.

• sophisticated evaluation tool with Matlab GUI

The following chapters will give you more details for the way from setting up a SV system to analyzing
its performance.

Chapter 5

Setting up and running SV systems

5.1 Creating parameter pools

A parameter pool is basically a directory containing parameterized speech files (parameter files). These
files with the filename extension .param store the feature vectors in the standard HTK parameter format.
The parameter pool contains a directory for each speaker and these directories themselves contain a
directory for each session of the speaker. At the lowest level, the session level, the parameter files are
stored. The files themselves use eight characters for the name; the last two characters specify the type
of the recorded item. E.g. a sample file name would be C1F001P1.param; the identifier P1 stands for
the first item of the triple numbers of the VeriDat database. We recommend using a similar structure as
several tools including the Matlab scripts require the two character identifier at that position.
Different parameter pools can be used later in a SV system; the tool switch MASV spk data set.pl allows
to set another parameter pool for a SV system. Several SV systems can refer to the same parameter pool.
There are three steps to create a parameter pool:

1. First use the tool create MASV paramPool.pl to create the basic structure of the pool. Here you
can specify the name of the parameter pool, the list of speakers used in the pool and the type of
sessions used in the pool. A new directory with the name of the parameter pool is created in the
parameter pools directory (as specified in ENV::MASV PARAMPOOL DIR).

2. In the second step, create a HTK config file for the HTK tool HCopy in the subdirec-
tory configs/ of your new parameter pool. As default name for this file you should use
C <name of parameter pool>. By this way, other tools can find the config file automatically
(otherwise you have to specify the name when invoking run HCopy.pl). For the syntax of the con-
figuration file, see the HTK documentation. An example is provided in the templates/ directory.

3. The final step involves the generation of the parameter files in this new directory structure. The
HTK tool HCopy is wrapped in a more comfortable script named run HCopy.pl. Here you normally
specify only the name of the parameter pool. There are more parameters when you chose to use
different script files or different config files. You have also an option for parallel processing of the
parameter files.

5.2 Creating SV systems

A SV system is defined as a sub directory in the sv systems/ directory in ENV::MASV BASEDIR. It is a
kind of sandbox, where all data for training and testing of the SV system is stored. You can have several
SV systems in parallel and you can even run SV systems in parallel; they do not influence each other.
However, please note that the so-called experiments of a given SV system share some data within your
SV system directory, namely the speaker set used, the parameter pool used and some temporary files.
Therefore, do not run experiments of the same SV system in parallel!!
The SV system contains sub directories for each speaker used in the system. These directories store the
models (in seperate folders) and the MLF files when performing tests with the models. Other directories
are:

14

5.3. CREATING HMM PROTOTYES 15

• info/: contains .info files about the completed tests done with run HVite.pl. They provide
information which models from which speaker were tested with what kind of material.

• links/: contains two links, one pointing the current parameter pool, the other pointing to the
current speaker set.

• log/: log files for the processed experiments

• protoconfs/: contains config files for creating HMM prototypes with the tool MakeProtoHMMSet.

• speakersets/: contains different speaker sets including a standard set (a copy of
<ENV::MASV BASEDIR>/templates/speakersets..

• speaker set lists/: lists of speaker sets which can be used to evaluate performance on several
speaker sets. These lists are e.g. used by loop thru speakersets.pl.

• scripts/: this directory can be used to store shell scripts which perform a complete run (including
training, testing and evaluation with Matlab).

• tmp/: temporary files, don’t modify them during a running experiment!

• world/: world models and template alignments with the world model are stored here; the names of
the directories are specified in the experiment configuration. Also test results of the world model
(e.g. when finding the best version of a world model) go here.

• expConfigs/: config files for generating the shell scripts are stored here.

The tool create MASV sv system.pl needs only two parameters: the name of the new SV system and the
poolname, which should be initially used. Several options allow to restrict the kind of recordings used; all
restrictions can only be done from the contents tha the parameter pool provides (you can’t e.g. include
more speakers in the SV system than there are in your parameter pool). The restriction can be done
in the domain of speakers, the type of recordings and the type of environments (a configuration given
in source file SR lib.pm which declares a combination of recording sessions and defines the training and
test material). All three options can take a comma seperated list of values.
The recordings can even be filtered on base of the transcription: the option -i allows to skip all recordings
with labels for transient or static noise. The option -m generates MLF files in the SV system directory.
These files can be transformed later to match the requirements for training/testing.

5.3 Creating HMM prototyes

The tool MakeProtoHMMSet is mainly based on the homonymous script from the HTKDemo. It uses
two parameters: the name of the prototype config file (given with relative path, starting in <sv system
path>/protoconfs) and the name of the SV system. The directory with the final prototypes is created
in the SV system directory with the name given in the prototype config file. Note that the original format
used by MakeProtoHMMSet has been slighly changed: the HMM list is searched now in hmm lists/. A
sample prototype config file can be found in the base directory in the templates/ folder.

5.4 Creating experiments

There are three tools which support you to generate an experiment script. All of them need an experiment
configuration file, which is expected to reside in the directory <sv system path>/expConfigs/ (you
only specify the relative path to the config file). check MASV experiment.pl checks the configuration
file and makes tests if all necessary list files and data for the experiment can be read and accessed.
calc size MASV experiment.pl checks if the required disc space is available for the experiment. Please
note, that still this tool needs the name of the experiment config file via the option -expConfig (making
this option not really optional ;-)).
run MASV experiment.pl creates a shell script from the config file. Some slight modification to the
generated script can be made via options: you can modify the name of the generated script, skip the
training phase and switch the performance calculation with Matlab on and off. Normally you will use

16 CHAPTER 5. SETTING UP AND RUNNING SV SYSTEMS

the configuration file for these options. But you also have the option to activate or deactivate some parts
of the processing with switches defined in the experiment script.
As a starting point for your own experiments configurations have a look in the templates/ directory.

5.5 Description of the experiment config files

The config files are simple Perl code snippets and are used to define all parameters of a speaker verification
experiment. Make sure that you don’t have any errors in the code! Every code line needs a semicolon at
the end. You can use the tool check MASV experiment.pl or "perl -c <expConfigFile>" to check
the syntax. Comments (lines starting with a #) can be inserted everywhere. The line order does not
matter, but the example file in templates/ describes the parameters in a logical sequence of steps from
training to testing. The given name of SV system directory is written to the experiment script when
run MASV experiment.pl actually creates the shell script. Thus, the experiment config files are very
flexible and can be reused to generate experiment scripts for other experiments.

• $createdScript
name of the generated batch script. If there is no path given, the file will be generated in the
current directory.

• $hmm list
name of the list file in the directory hmm lists/. All the HMM models listed in this file will be
used during training/testing.

• $dict
name of dictionary file (in the directory syntax/), used e.g. during world model test.

• $protoDir
the name of the prototype directory (relative path from the SV system directory). The prototype
directory must contain a HMM file for each entry in the corresponding HMM list given with the
parameter above!.

• $useGMM
set this to ”1” when using a GMM (only one HMM model with one state for all speech frames).
This needs a slightly different setup when testing.

• $mixtures
no of mixtures per state. The mixtures of the prototype models are split right after the initial
estimation (HCompV/HInit).

• $parallelComputation
set this to ”1” to use several computers in parallel (useful especially during training of the models
and testing).

• $minVar
set minimum variance; if empty: default is 0.001. This option corresponds with the option -v of
the HTK tools.

• $mlf training
used MLF file during training. This option corresponds with the option -I of the HTK tools.

• $seed world
path to directory (starting in the SV system directory) containing the base models for training of
the world model. If set to "", the intial models are generated with run HCompV.pl.

• $num iterations world
number of training iterations for the world model.

• @world list
array of training configurations for the world model (see description 7.2). If you specify more than
one configuration, you have to give the same amount of values to the parameters @hmmBaseDirWorld
and @world test list. This method allows you to train more than one world model with different
sets of speech files (e.g. noisy vs. quiet environment).

5.5. DESCRIPTION OF THE EXPERIMENT CONFIG FILES 17

• @hmmBaseDirWorld
name(s) for the world models. A directory with this name is generated in the path <sv system
path>/world/.

• @world test list
test configuration for testing the world model. Normally you will specify your development set.
The best world model is selected by performing a speech recognition test (using HVite running
with the defined language model) with all world model version on the material of the given testing
configuration.

• $makeCohortNorm
use cohort normalization instead of world normalization. Experimental state!

• $doHNorm use additional information about used handset (from labeling) or recognized handset
(from handset detector) and perform h-norm.

• $seed models
base models for starting training of speaker models. Leave empty ("" for complete initialization
with HCompV; use "bestWorld" for seeding with best world model, otherwise use a directory
(starting at the SV system directory level) containing the seed models.

• $num iterations model
num of training iterations; use ”” for same amount of training iterations as used in world model
training.

• @trainingModelConf
array of training configuration(s) for the speaker models. Similar to the world model, you can
build up several different models per speaker. The number of model names in the parameter
@hmmBaseDirModel has to match with the number of training configurations.

• @hmmBaseDirModel
name(s) of the speaker models. A directory for each of these names is generated in the speaker
directory.

• $mlf test
MLF for testing the models (used in HVite as MLF given with option -I when doing force alignment
with option -a).

• @HViteTrainedModelConf
test configurations for the genuine tests (speaker of speech material and speaker model are match-
ing). You can use more than one entry when you have trained several models.

• @HViteWorldConf
test configuration for the test of speech material with the world model. Normally you will specify
all the material that you use for genuine tests and imposter tests (the world normalization is needed
for both kinds of tests).

• @HViteCrossTestConf
test configuration for the imposter tests (speaker of speech material and speaker model do not
match).

• $hmm version world test
specify the version of the world model to be used for world tests. Leave empty("") in case you
want the best world model determined before.

• $hmm version model test
specify the version of the speaker model to be used for genuine tests. Leave empty ("") in case you
want to use the same version as the best world model.

18 CHAPTER 5. SETTING UP AND RUNNING SV SYSTEMS

• $FA id
this string is used as a part of the file name for all MLF files generated during the force aligned
recognition with HVite. Use different names here for your experiments when you want to keep the
files from several different experiments. Otherwise, the files are overwritten.

• $startMatlab
set this to ”1” if you want to do the performance evaluation right after training and testing. When
executing run MASV experiment.pl, a Matlab script will be incorporated in the shell script and
extracted at runtime.

• $pathMatlabResults
use a different path for storing the results of the Matlab run. Default is
<ENV::MASV BASEDIR>/sv systems/results/.

• $autoClean FA Files
if set to "1", clean all MLF files after the evaluation part with Matlab. The model directories of
the speakers and the world models are kept. Keep the MLF files when debugging and testing of
system.

5.6 Running experiments

After a run of run MASV experiment.pl a shell script is written to the current directory. It can be moved
to any place in the file system but a good place will be the directory <sv system path>/scripts. At
the beginning of the shell script there are some switches defined starting "do ". Here you can quickly
enable or disable a part in the training or testing sequence. By default, all switches are enabled except
for the clean up part; here the setting of the expConf file is used.
The shell script generated with run MASV experiment.pl contains also a template for a Matlab script
which does the score normalization and further calculations of performance figures. During runtime
of the shell script the Matlab script is written to a file startup.m in the directory specified in the
variable MATLAB CALC PATH. If you chose to do the Matlab processing, the shell script will change to
MATLAB CALC PATH after all testing procedures and will start Matlab there. By default, Matlab executes
then all commands in the startup.m batch file. For a more detailed description of the commands used
in the Matlab script, see the next chapter.
To start the shell script, simply change to its directory and start it from the command line. You may
need to add "./" to the name in case that it resides in a directory which is not contained in your PATH
variable. E.g.:

./batch_script_gmm_16_mixtures.sh

Chapter 6

Analyzing results

The Matlab part of MASV is mainly used to collect and process the data generated with the training/test-
ing shell script, to calculate various performance figures and to offer a GUI for exploring the results. In
the first section we will present the Matlab functions used for the data handling and we will give detailed
information about the information exchange between the Perl part and the Matlab functions via files.
The second section will describe the graphical interface of the data exploration tool Plot SR parameters
which gives easy access to the data calculated before.

6.1 Matlab functions for data processing and evaluation

There are two data types for storing information about an experiment defined in Matlab: a ”result struct”
and a ”score result struct”. The result struct contains all post-processed llh scores which were originally
in the MLF files of the tests. Post processing of the scores means here different kinds of normalization
applied to the scores. Also, the scores for each speaker and test type are sorted by their values. The score
result struct contains one or more ”parts” which describe various sets of performance figures. For each
part there is a specification, which kinds of recordings from what speakers were included in computing
the perfomance figures. More details are given in 6.1.2.
As already mentioned in 5.6 there is a template for a Matlab script which performs all necessary post-
processing. An example script could look like this:

1 current_path = pwd; % store current path

2 cd ../.. % change to normal Matlab directory

3 startup % executed standard startup.m file

4 cd(current_path); % change back

5 [startScript]= read_experiment_Details ; % read content of shell script

6 rs=calc_FR_FA(’LPCC_SD ’,’GMM_128_altTraining1 ’ ,0,0,1,’simple world ’,’

without pauses ’,’per frame ’,’force_aligned_GMM_128_altTraining1_ ’);

% create result struct

7 rs.expDetails.script = startScript ; % add content of shell script for

documentation purposes

8 save_result(rs ,’/raid/tera6/VERIDAT/sv_systems/results/LPCC_SD/GMM/’);

% save the result struct

9 sr=calc_score_result(rs); % create a score result struct

10 sr.expDetails.script = startScript ; % add content of shell script for

documentation purposes

11 save_score_result(sr ,’/raid/tera6/VERIDAT/sv_systems/results/LPCC_SD/GMM

/’); % save

The first four lines make sure that all common settings are done; the fifth line reads the contents of the
shell script to a string cell. Line 6 creates a result struct for the given experiment; it is described in more
detail in 6.1.1. The shell script is stored in the field expDetails.script of the result struct (line 7).
Other data can be stored here as well. Note that there is also a field info which can store any kind of
comments in a string cell. Line 8 saves the new result struct, line 9 creates a score result struct which
includes one standard part (speaker dependent EERs with same gender impostors, training material

19

20 CHAPTER 6. ANALYZING RESULTS

from genuine speakers excluded from evaluation). Finally, the information about the shell script is also
included similar to line 7 and the resulting score result struct is saved (line 11).

6.1.1 Creating and saving results

The function calc FR FA takes at minimum 8 parameters; there are two more, optional parameters:

function result_struct = calc_FR_FA(sv_system_name, ...
result_name, ...
full_calc_flag, ...
full_info_flag, ...
incl_world_flag, ...
norm_type, ...
llhsum_type, ...
score_type, ...
[mlf_file_base = ’force_aligned_’, ...
cohort_size = 3])

sv system name
Name of the SV system from which the data will be read. The resulting filename of the
result struct will be build up using this name.

result name
An identifier for the result; useful to distinguish between several result structs within
one SV system.

full calc flag
Flag for more additional computations of mean and standard deviation of llh scores (per
file and per speaker). Values: 0 or 1.

full info flag
Flag for including also segment information (start and end time plus model name of each
segment) in the result struct. Warning: gives increased file size by factor 4! Values: 0
or 1.

incl world flag
Flag for including also raw llh scores of the world model. Useful for debugging purposes.
Values: 0 or 1.

norm type
Type of normalization of llh scores. Possible values:

’none’ keep raw llh values.
’simple world’ normalize with world model score: llhnormed = llhraw − llhworld
’cohort mean’ normalize with mean score of n-best cohort speakers (see also parameter

cohort size).
’cohort max’ normalize with best score of all cohort speakers.

llhsum type
Type of segments included in the overall llh sum per recording. Values:

’with pauses’ include all segments
’without pauses’ ignore segments ’sp’, ’silEnd’, ’silBegin’, ’sil’

score type
Type of final llh score. Values:

’simple sum’ sum over selected segments of recording.
’per frame’ like above, but normalized by length (number of frames).

mlf file base
Prefix of the test MLF files used. This string is used to generate the file names of the
test MLF files, which are read:

world mlf <mlf file base>client x world.mlf

6.1. MATLAB FUNCTIONS FOR DATA PROCESSING AND EVALUATION 21

genuine spk mlf <mlf file base>client x model.mlf

impostor spk mlf <mlf file base><imp speaker> x model.mlf

impostor on cohort spk mlf <mlf file base>cohort <imp speaker> x self.mlf

The name of the info files are generated with the same scheme:

world test <mlf file base>client x world.info

genuine test <mlf file base>client x model.info

impostor test <mlf file base>imp x model.info

cohort test <mlf file base>cohort x model.info

cohort size
Number of cohort speakers when computing mean cohort score.

6.1.2 Creating score results

The function calc score results computes a score result struct with a standard part.

function result_struct = calc_score_result(result_struct)

The first part is a summary of speaker dependent EERs with same gender impostors. Training material
from genuine speaker tests is excluded from evaluation; all material from impostor tests is taken.
More different parts with different performance figures and with different selection of speech material can
be created with the function add part to score result:

score_result_struct = add_part_to_score_result(result_struct, ...
score_result_struct, ...
result_type, ...
description, ...
menu_descr, ...
threshold, ...
include_models, ...
imp_spks_list, ..
fr_sel_sessions, ..
fa_sel_sessions)

The functions takes a score result struct, adds a part and returns an updated version.

result struct
Matching result struct, needed for computation of the performance figures.

result type
Type of part to add:

’fr fa’ FR rates and FA rates (a priori) for given threshold(s).
’det’ DET curve based on all selected recordings plus individual FR/FA rates for de-

termined EER threshold.
’eer’ speaker dependent EER (a posteriori, per genuine speaker).

description
A description string with arbitrary length.

menu descr
A short description string, will be used in the menus of the data exploration GUI.

threshold
Threshold(s) for computing a ’fr fa’ part. A single value will be used for all genuine
speakers, a vector with the same number of entries as genuine speakers allows individual
thresholds when computing FR/FA rates.

include models
A string cell for selecting the genuine speakers (given by four digit speaker ids). Usually
you will use the list model info.trained models stored in the result struct.

22 CHAPTER 6. ANALYZING RESULTS

imp spks list
A string cell for selecting impostor speakers. Contains a list of speaker ids or one of the
following strings:

’all’ all impostors (as defined in the list model info.imp test spks in the result struct.
’same gender’ select for each genuine speaker all impostor speakers with matching

gender.
’cross-gender’ like above, but select other gender.
’all female’
’all male’

fr sel sessions
A string cell for selecting the genuine speaker recordings. Contains one of the following
values:

’all’ all genuine recordings.
’training’ all genuine recordings which were used for training the speaker models.
’without training’ exclude training recordings.

In addition, the names of the session lists defined in the file SR lib.pm of the Perl scripts
can also be used here.

fa sel sessions
A string cell for selecting the impostor speaker recordings. Contains only values from
the predefined session lists.

6.1.3 Interface between MASV’s Perl part and Matlab part

The information about a completed test of a SV system is transfered from the Perl part to the Matlab
part via two types of files:

MLF files (defined by HTK): they contain the sequence of models defined for forced
alignment and the corresponding log likelihood values (llh).

info files: These files reside in the SV system directory info/ and describe for each test
type (defined later), for which speakers which models were used with the selected type
of material..

There are four possible test types:

genuine test the material of a speaker is tested with its own model.

impostor test material from other speakers is tested with a speaker model (vulnerated
speaker).

world test material from one or more speakers is tested against a world model (used for
normalization later).

cohort test like world test, but here, the set of cohort models is used instead of a single
world model (used for cohort normalization).

MLF files

There are two possible formats for the entries in the MLF files:

• begin end model llh word

• begin end model llh

For each speaker and test type there is one MLF file in the speaker’s directory. It contains all recordings
that were used for the particular test.
The filenames are build up with the following structure: The base name of the files (called here
mlf file base) starts with force aligned , followed by an optional string (as defined in the expConf
in the variable $FA id). For each test type, the complete file name is:

6.2. GUI FOR DATA EXPLORATION 23

world mlf <mlf file base>client x world.mlf

genuine spk mlf <mlf file base>client x model.mlf

impostor spk mlf <mlf file base>0000 x model.mlf

impostor on cohort spk mlf <mlf file base>cohort 0000 x self.mlf

Info files

The format of these files is plain text with at least two or three lines:

line 1 name of speaker list, as defined in SR lib.pm. From these speakers the speech material
is used for the test (in case of genuine test, world test and cohort test). In case of a
impostor test, these speakers provide the models for the test (vulnerated speakers).

line 2 (optional, only for impostor tests) another name of speaker list. It defines the
imposter speakers.

line 3 and following Each line contains an entry for each sub model used in testing. Nor-
mally the data is not split to train and test several models, so there is only one entry
here. An entry consists of three fields, seperated by commas. The first field gives the
script file (selected speech material for the test), the second field gives the version of the
(sub) model; the name of the model directory is given in the last field. Note, that in
case of a world test, the model directory is located in world/.

The name of the info files are generated with a similar scheme used for the MLF files:

world test <mlf file base>client x world.info

genuine test <mlf file base>client x model.info

impostor test <mlf file base>imp x model.info

cohort test <mlf file base>cohort x model.info

6.2 GUI for data exploration

The top directory of the Matlab scripts contains the Matlab function Plot SR parameters. Enter this
command at the Matlab prompt. If you have not loaded already result structs or score result structs in
your current Matlab session, you are prompted to select a struct from your standard directory for results
(as defined in the ENV::MASV MATLAB RESULTSDIR). After loading the GUI depicted in figure 6.1 shows
up.

24 CHAPTER 6. ANALYZING RESULTS

Selection panel for
loaded results Load more results

Selection of plot type

Averaging option over selected
genuine recordings

Averaging option over selected
impostor recordings

Information about select part
of score result

Information about experiment
(as given in the field 'info' of a
result or score result)

Busy indicator (for time
consuming plots)

Overall averaging option (only
available for plots 'FR vs FA')

Selection of parts of a score
result (only available for plot
types using only a score results)

Selection of genuine recordings:
speakers (left) and their session
types (right)

Selection of impostor recordings:
speakers (left) and their session
types (right)

Play selected
recording

Open Matlab's
edit window for
selected item

Information about
selected items
(curves, data points)

Mark single data values: select by
speakers (left) and/or by session
types (right).
	 'Show'	 mark with white color
	 'Clear'	 return to original view

Plot control functions:
	 'Draw'	 draw plot
	 'Clear'	 clear plotting area
	 'draw hist'	 plot as histogram
	 'show more'	 show add. information
	 'new figure'	 draw plot in new figure
	 'show d. ptns'	 mark single data values
	 'zoom'	 activate zoom function
	 'zoom out'	 zoom back to original view

Figure 6.1: Graphical interface for exploration of test datasets of a SV system.

Figure 6.2:

6.2. GUI FOR DATA EXPLORATION 25

Figure 6.3:

Figure 6.4:

Chapter 7

Description of the perl tools

Overview - not available yet

7.1 Common options

Common to all tools are the following two options:

-version
print version and release information

-? | help
print a help message.

The help message is also printed when no option and parameter is given to a tool.

7.2 Recording configuration

Several tools and also the expConf files use parameters which are referred to as ”training configurations”
or ”test configurations”. As a generic label we use the term ”recording configuration” here. It is a compact
description of a speaker set (defined in the speaker list) and the script files used by these speakers. An
example for a recording configuration would be the string dev test/S list all. The part before the
slash describes the speakers selected. These definition are done in the speaker list file (residing in <sv
system path>/speaker lists/). The label all set refers to all speakers in the SV system. The part
after the slash describes the script files (or S-list file named after the option -S of the HTK tools).It is
either simply the name of the S-list file or, in case of only two letters, an abbreviation of an S-list file
name as defined in the Perl source file SR lib.pm. An example would be the string aa which is an alias to
the S-list file name S list all. This mechanism makes the assumption that for each speaker directory
in a SV system there is the same set of S-list files. By this way the selection of recording files works with
arbitrary speaker sets.

7.3 High-Level-Tools

7.3.1 create MASV paramPool.pl

Creates a new parameter pool and configuration scripts for further processing with run HCopy.pl.

create_MASV_paramPool.pl [options] poolname

Creates script files for HCopy with name S pool <poolname>. Speech files are read
from <ENV::MASV SOURCE DATABASE>; output path for script files is the generated directory
<ENV::MASV PARAMPOOL DIR>/<poolname>/scripts/. Script files are generated for

- the selected speakers from the -s option

26

7.3. HIGH-LEVEL-TOOLS 27

- for all speakers of the corpus

The scripts contain all recordings of the given type (-t) of all available sessions.
Options:

-t | typesession = s
specify type of recordings. default: ’P[1-7]’ (all triple numbers)

-s | speakers = s
specify set of speakers. default: speaker set @all as defined in the template file
<ENV::MASV BASEDIR>/templates/speaker sets/standard. Include additional sets
here.

7.3.2 run HCopy.pl

Runs HCopy with the script files for given pool.

run_HCopy.pl [options] poolname [script_file [config_file]]

Run HCopy for the parameter pool <poolname> with the given script file and the given HCopy config file.
If one or both are omitted, the file S pool <poolname> is assumed to be the script file and C <poolname>
is used as HCopy config file. Script files are searched for in the scripts/-directory of the pool; config files
are searched for in the config/-directory.
Options:

-xo | extraOptions
pass extra options to HCopy

-p | parallelComputation
use several hosts to run the HCopy command.

7.3.3 create MASV sv system.pl

Creates an SV system directory for running experiments

create_MASV_sv_system.pl [options] sv_system_name poolname

Creates a directory <sv system name> in the sv systems/ directory; signal files are used from pool
<poolname>.
Options:

-t | typesession = s
specify type of recordings. Default: ’P[1-7]’ (all VeriDat triple numbers)

-s | speakers = s
specify set of speakers. Default: speakers of set @all from the template file
<ENV::MASV BASEDIR>/templates/speaker sets/standard. Add additional sets here.

-e | environment = s
specify environment set. Default: all. Examples for possible values (from VeriDat defi-
nition):

• FixedQuiet
training: sessions 01,09,13,12;
evaluate: sessions 03,05,17

• all
(training: sessions 01,02,03,04;
evaluate: sessions 05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Make your own definitions in MASV db desc.pm in the hashes
$training sessions lists and $evaluate sessions lists.

-m | makeMLFs
create two MLF files, one with prompted text, one with transcription of speaker’s utter-
ance. default: not set

28 CHAPTER 7. DESCRIPTION OF THE PERL TOOLS

-f | filterNoises = s
only used, when MLF files are generated; filters noise labels from the labels. Default:
not set

-c | createStatisticFile
create main statistic file, showing distribution of labels in test and training set. Does
not consider skipped recordings from individual subjects (see option -i).

-i | skipInterruptedSessions
skip Sessions containing noise labels (defined in MASV db desc.pm).

onlyScripts = s
do not create new SV system, only create script files in existing SV system. Existing
script files are not overwritten. Two MLF files (for prompted text and the transcriptions)
are generated with the tag for <onlyScripts> in the file name.

7.3.4 check MASV experiment.pl

Check files for an experiment

check_MASV_experiment.pl [options] expConfig sv_system_name

Check the given experiment configuration expConfig of the SV system <sv system name> for complete-
ness of the list files and of the configuration files. The path to the file expConfig is given relative to the
directory expConfig/ of the SV system.

7.3.5 calc size MASV experiment.pl

Prints the required data amount for an experiment.

calc_size_MASV_experiment.pl [-expConfig | other options]
sv_system_name

Calculate the required data amount for an experiment. Parameters can be given either seperately or with
the help of an experiment config file The path to the file expConfig is given relative to the directory
expConfig/ of the SV system.
Options:

-expConfig=s
load config file from SV system directory expConfig/. The settings can be overwritten
from the command line options.

-wt | world test list=s
configuration for testing the world model with run worldModelTest.pl. Default is
’dev set/aa’

-iw|num iterations world=s
training iterations for world model.

-im|num iterations model=s
training iterations for speaker models.

-hvtc|HViteTrainedModelConf=s
configuration when testing speaker models; default is ’all training/aa’.

-hvxc|HViteCrossConf=s
configuration when testing with impostor speakers; default is ’all test/aa’.

7.3.6 run MASV experiment.pl

Creates a complete training and test sequence for an experiment.

run_MASV_experiment.pl [options] expConfig sv_system_name

7.3. HIGH-LEVEL-TOOLS 29

Creates a complete shell script for training and test of the experiment of <sv system name>. The file
expConfig from the SV system directory expConfig/ contains the settings. Creates necessary shell (and
Matlab) scripts for execution later on.
Options:

-cs | createScript=s
create shell script with given name;

-doTestsOnly
perform only HVite tests for spk models with world, self and impostor test. Default:
setting from expConfig

-sm|startMatlab
include Matlab script for performance calculation. Default: setting from expConfig.

7.3.7 make clean MASV experiment.pl

deletes temporary files of an experiment.

make_clean_MASV_experiment.pl [-expConfig | options]
sv_system_name

Delete files created during a run of an experiment of the SV system <sv system name>.
Options:

-expConfig=s
load config file from SV system directory expConfig/. The settings can be overwritten
from the command line options.

-cleanAll
delete also force alignment files from world test and templates MLFs.

-cleanModels
delete also world models and speaker models.

-thoroughly
clean over all speaker directories, not regarding current speaker set.

-hmmBaseDirWorld=s
use models in given directory in world directory; Default is hmm/. used here to find the
world models for -cleanModels.

-hvwc|HViteWorldConf=s
configuration when testing with world model; default is ’all/aa’.Used here to specify
all spk dirs containing MLF files.

-hmmBaseDirModel=s
use models in given directory in speaker directory. default is hmm/. used here to find all
speaker model directories.

-hvtc|HViteTrainedModelConf=s
configuration when testing speaker models; default is ’all training/aa’. used here to
find all speakers with models.

-id|FA id=s
use given string to identify MLFs of this SV system; default is: "" i.e. files with default
name forced aligned client x model.mlf, forced aligned client x world.mlf
and "forced aligned 0* x model.mlf are selected.

7.3.8 loop thru speakersets.pl

Repeat a script for different speaker sets.

loop_thru_speakersets.pl [options] script_name speakerset_list sv_system_name

Repeat a shell script for the given speaker sets. The speaker sets are listed in a file (speakerset list),
one entry per line. The speaker sets themselves are defined in the SV system directory speaker sets/.

30 CHAPTER 7. DESCRIPTION OF THE PERL TOOLS

7.4 Low-Level-Tools

7.4.1 run HTKCommand.pl

Runs an arbitrary (not necessarily HTK) command for a SV system

run_HTKCommand.pl [options] sv_system_name commandstring

Run an arbitrary command (given by <commandstring>) for the SV system <sv system name>. Useful
to log the commands in the SV system log file. Also used for applying commands to a bunch of speaker
directories. The command string can contain ’%spk dir%’ which will expand to the current speaker
directory when using the -i option.
Options:

-i | iterateOnVPs
perform the command in each speaker’s directory

-tc | trainingModelConf
configuration to specify the speaker directories; default is ’all training/aa’; see de-
scription 7.2. The script file part of the configuration (part after the slash) is ignored
here.

7.4.2 run HCompV.pl

Runs HCompV for a SV system

run_HCompV.pl [options] sv_system_name

Run HCompV for SV system <sv system name>. Flat start HMMs are written to the directory hmm.0/
located in each speaker’s directory.
Options:

-w | world
do a flat start for the world model. Default: not activated

-wl | world list
configuration for world flat start; default is ’world set/aa’; ignored, when -w option
not set.

-tc | trainingModelConf
configuration for normal flat start; default is ’training set/at’; see description 7.2;
ignored, when option -w set.

-protoDir=s
directory with prototype models.

-v | minVar
define minimum value for the elements of the covariance matrix of the model. Default
value is 0.001

-hmmBaseDir
build models in given directory in speaker resp. world directory; default is hmm/.

-useGMM
adapt behaviour for using a single state model for all speech data (GMM).

-xo | extraOptions
pass extra options to HCompV

-p | parallelComputation
use several hosts for running HCompV (useful only for normal training, option -tc)

7.4. LOW-LEVEL-TOOLS 31

7.4.3 run HInit.pl

Runs HInit for a SV system (useful for GMM models)

run_HInit.pl [options] sv_system_name

Run HInit for SV system <sv system name>. Flat start HMMs are written to the directory hmm.0/
located in each speaker’s directory.
Options:

-w | world
do a flat start for the world model. Default: not activated

-wl | world list
configuration for world flat start; default is ’world set/aa’; ignored, when -w option
not set.

-tc | trainingModelConf
configuration for normal flat start; default is ’training set/at’; see description 7.2;
ignored, when -w option set.

-v | minVar
minimum value for the elements of the covariance matrix of the model. Default value is
0.001

-m | mlf
specify MLF file, default is mlf prompted.mlf.

-protoDir
use models in directory <protoDir> as base.

-hmmBaseDir
build models in given directory in speaker resp. world directory; default is hmm/

-useGMM
adapt behaviour for using a single state model with multiple mixtures (GMM).

-xo | extraOptions
pass extra options to HInit

-p | parallelComputation
use several hosts for running HInit (useful only for normal training, option -tc)

7.4.4 run HERest.pl

Run HERest for a SV system

run_HERest.pl [options] sv_system_name num_iterations [first_iteration_no]

Run HERest for the SV system <sv system name>. Performs <num iterations> iterations, starting
by default with model version 0. Optional parameter <first iteration no> gives number of the first
model version to be built when starting the iteration loop. Default value is therefore 1.
Options:

-w | world
make a single (world) model

-wl | world list
configuration for world flat start; default is ’world set/aa’; see description 7.2

-tc | trainingModelConf
use configuration for normal estimation step; default is ’training set/at’; see descrip-
tion 7.2.

-m | mlf
specify MLF file, default is mlf prompted.mlf

32 CHAPTER 7. DESCRIPTION OF THE PERL TOOLS

-h | hmm list
specify HMM list, default is HMM number.list

-v | minVar
minimum value for the elements of the covariance matrix of the model. Default value is
0.001

-hmmBaseDir
build models in given directory in speaker resp. world directory; default is hmm/

-macros
use given file for HMM macros; it must reside in the directory of the HMM models

-useGMM
adapt behaviour for using a single state model with multiple mixtures (GMM).

-useHEAdapt
use adapting scheme of HEAdapt with MAP procedure instead of Baum-Welch reesti-
mation. MAP adaption factor is fixed to 15.0. Works here only with patched version of
HEAdapt.

-xo | extraOptions
pass extra options to HERest

-p | parallelComputation
use several hosts for running HERest; (useful for both normal and world training).

7.4.5 run HVite.pl

Runs HVite for a SV system

run_HVite.pl [options] sv_system_name hmm_version

Run HVite for the SV system <sv system name>. Uses HMM models of the version <hmm version>.
Options:

-o | outputMLF=s
use given name for output MLF file; default is

- force aligned client x model.mlf for normal operation
- force aligned 0000 x model.mlf for impostor test with 0000 replaced by the

speaker ID
- force aligned client x world.mlf for world test
- force aligned cohort 0000 x model.mlf for cohort test with 0000 replaced by the

speaker ID

-wm | outputWordMLF
use word level for output MLF file. Useful when using the MLF file later on as template
for force alignment and single tee models can occur. Note that ”words” have to defined
by a normal model and a tee model (e.g. ”izwanzig”, using ”zwanzig” and ”sp”)

-a | appendToMLF
append HVite output MLF to existing MLF with same name. If the MLF file does not
exist, it will be created. Default value: not set

-t | templateMLF=s
use the given MLF file as a template for force alignment with contraints both on label
sequence and time sequence. Note: normal forced alignment enforces only the label
sequence. The -m option is ignored, but the training configuration of the -tc option is
used instead: all recordings that also occur in the training data are used.

-d | dict=s
use given dictionary from the directory syntax/. Default value: generaldict

-s | singleTestFiles=s
perform only test with given test files (comma seperated list).

7.4. LOW-LEVEL-TOOLS 33

-m | mlf=s
specify MLF file, default is mlf prompted.mlf

-h | hmm list=s
specify HMM list, default is HMM number.list

-x | crossTest
perform test of all test sentences against all models; impostor test needs the options -xc
and -tc !

-xc | crossTestConf=s
configuration for impostor test; default is ’test set/aa’.

-w | worldTest
perform test of all test sentences against world model.

-wc | worldListConf=s
configuration for world test; default is ’all tt/aa’ (all speakers from training and test
set).

-wmt | worldModelTest
perform test of world model, write results in a single MLF; this option is normally used
by run worldModelTest.pl.

-wmtc | worldModelTestConf=s
configuration to specify speakers for world model test; default is ’dev set/aa’; see
description 7.2; this option is normally used by run worldModelTest.pl.

-tc | trainingModelConf=s
configuration to specify trained models; default is ’training set/at’; see description
7.2

-c | cohortTest
perform tests of cohort speakers on given models; use -tc to specify models to be tested
(’all tt/aa’ e.g.), use -xc to specify test speakers (’world set/aa’ e.g.); session spec-
ification given by -xc is used (similar to option -x)

-hmmBaseDir=s
use models in given directory in speaker resp. world directory; default is hmm/

-useGMM
adapt behaviour for using a single state model with multiple mixtures (GMM).

-xo | extraOptions=s
pass extra options to HVite

-p|parallelComputation
use several hosts for running HVite

7.4.6 run worldModelTest.pl

Runs tests on world model with given speaker configuration.

run_worldModelTest.pl [options] sv_system_name hmm_version [start hmm_version, [iterations]]

Runs HVite for the SV system <sv system name> with given world models in normal speech recognition
mode. It uses HMM models of the version <hmm version>. Test samples are taken by default from the
recording configuration ’dev set/aa’.
Options:

-l | list=s
recording configuration. Default is ’dev set/aa’.

-o | outputMLF=s
use given name for output MLF file; default is
test worldModel with <list name>.mlf

-d | dict=s
use given dictionary from the directory syntax/; default is generaldict.

34 CHAPTER 7. DESCRIPTION OF THE PERL TOOLS

-m | mlf=s
specify MLF file; default is mlf prompted.mlf.

-h | hmm list=s
specify HMM list; default is HMM number.list

-hmmBaseDir=s
use models in given directory; default is hmm/

-macros=s
use given file for HMM macros; it must reside in the directory of the HMM models.

-n | wdnet
specify word network from the directory syntax/; default is numbernet.

-xo | extraOptions
pass extra options to HVite

-p | parallelComputation
use several hosts for running HVite

7.5 Other tools

7.5.1 calc GMM world llh.pl

Calculates the log-likelihood per frame over all entries in a MLF file. The result (a single float) is printed
to STDOUT.

calc_GMM_world_llh.pl mlf_file

This tool is useful to determine how good a GMM model fits to speech data. It is usually only used by
run worldModelTest.pl.

- fd|frame duration = i
duration of a frame, given in HTK’s 100ns units; default is 100000 (= 10ms).

7.5.2 get bestWorldModel GMM.pl

Reads given result files for GMM world test (made with calc GMM world llh.pl) and finds the version
which gives the minimum of the overall llh. The minimum difference in the score between suceeding
versions must be 0.1, otherwise the current version is declared as the best model.

get_bestWorldModel_GMM.pl sv_system_name hmmBaseDir

Note. the result files must be in the world/ directory of the SV system <sv system name> and their
name must start with the string

calc_GMM_world_llh_test_<hmmBaseDir>_<version_of_model>

and end with the extension .txt .

7.5.3 get bestWorldModel.pl

Reads given HResults files and finds the version which gives the first maximum of the word accuracy.

get_bestWorldModel.pl sv_system_name hmmBaseDir

Note: the files generated with HResults must reside in the world/ directory of the SV system
<sv system name> and their name must start with the string

hresults_test_<hmmBaseDir>_<version_of_model>

and end with the extension .txt .

7.5. OTHER TOOLS 35

7.5.4 change entry transitions to tee.pl

Corrects tee models after HCompV estimation: it reactivates transitions from the non-emitting start state
to the non-emitting end state.
The model <hmm model name> is searched in the directory <hmm base dir>.

change_entry_transitions_to_tee.pl sv_system_name hmm_base_dir hmm_model_name

7.5.5 loop thru speakersets.pl

Repeats a script for different speaker sets.

loop_thru_speakersets.pl [options] script_name speakerset_list sv_system_name

Repeats a shell script for the given speaker sets. The speakersets are listed in a file (speakerset list),
one entry per line. The speakersets themselves are defined in the SV system directory speaker sets/.
This tool is useful to evaluate the statistical dependency of the performance of a SV system on different
speaker sets (a kind of bootstrap analysis).

7.5.6 message2log.pl

Writes message to log file of a SV system.

message2log.pl [options] message sv_system_name

Writes the message to the log file of a SV system. The default log file name is log.txt. All log files are
kept in the log/ directory inside the SV system directory.
Options:

-visible | v
display message also on STDOUT.

-logfile
set logfile; default is log.txt.

7.5.7 raw2wav.pl

Convert raw A-law files with 8kHz sampling frequency, one channel and byte coding to a sound file in
WAV format with the same encoding.

raw2wav.pl <infile> <outfile>

This script is used in run HCopy.pl as a filter for the raw sound files.

7.5.8 split file lists.pl

split_file_lists.pl [options] inputlist outputlist output_no_of_entries

Reduce a script file to <output no of entries> list entries. If more than one speaker is contained in the
inputlist (e.g. world lists), the reduction is done for each speaker seperately. The selection is done evenly
spaced over all entries of a speaker. In contrast, the option -h takes the first <output no of entries>
entries.
Options:

-h | head
return the first <output no of entries> entries in a contiguous block.

Use the shell script create difference list.sh to create the complementary part.

36 CHAPTER 7. DESCRIPTION OF THE PERL TOOLS

7.5.9 create difference list.sh

Create a difference file for a script file.

create_difference_list.sh complete_list subset difference_subset

Create a difference file for a script file which contains all entries of complete list that are not in the
file subset.

7.5.10 switch MASV spk data set.pl

Changes speaker set configuration and parameter pool.

switch_MASV_spk_data_set.pl [options] sv_system_name speaker_set_name [poolname]

Creates a new link structure in the SV system directory links/ which points to the given speaker set
and (optionally) to the given parameterpool.

Chapter 8

Description of the Matlab tools

not available yet

37

Appendix A

GNU Free Documentation License

Version 1.2, November 2002
Copyright c©2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document
”free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.
This License is a kind of ”copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.
We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The ”Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as ”you”. You accept the license if you copy, modify or distribute the work in
a way requiring permission under copyright law.
A ”Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.
A ”Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position regarding them.
The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The

38

39

Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.
The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A ”Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not ”Transparent” is called ”Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.
The ”Title Page” means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, ”Title Page” means the text near the most prominent appearance of
the work’s title, preceding the beginning of the body of the text.
A section ”Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as ”Acknowledgements”, ”Dedications”,
”Endorsements”, or ”History”.) To ”Preserve the Title” of such a section when you modify the
Document means that it remains a section ”Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each

40 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled ”History” in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the ”History” section. You may omit a network location for
a work that was published at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included in the Modified
Version.

41

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sec-
tions and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.
You may add a section Entitled ”Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled ”History” in the various original documents,
forming one section Entitled ”History”; likewise combine any sections Entitled ”Acknowledgements”, and
any sections Entitled ”Dedications”. You must delete all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an ”aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

42 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in addition
to the original versions of these Invariant Sections. You may include a translation of this License, and
all the license notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.
If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License ”or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled
”GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the ”with...Texts.” line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

http://www.gnu.org/copyleft/

	General information
	Overview
	Notation
	Changes

	Requirements
	Installation
	Unpacking and installing
	Perl scripts
	Matlab scripts

	Additional setup
	Setting up the hosts list
	Adapting database specific functions

	System description
	Setting up and running SV systems
	Creating parameter pools
	Creating SV systems
	Creating HMM prototyes
	Creating experiments
	Description of the experiment config files
	Running experiments

	Analyzing results
	Matlab functions for data processing and evaluation
	Creating and saving results
	Creating score results
	Interface between MASV's Perl part and Matlab part

	GUI for data exploration

	Description of the perl tools
	Common options
	Recording configuration
	High-Level-Tools
	create_MASV_paramPool.pl
	run_HCopy.pl
	create_MASV_sv_system.pl
	check_MASV_experiment.pl
	calc_size_MASV_experiment.pl
	run_MASV_experiment.pl
	make_clean_MASV_experiment.pl
	loop_thru_speakersets.pl

	Low-Level-Tools
	run_HTKCommand.pl
	run_HCompV.pl
	run_HInit.pl
	run_HERest.pl
	run_HVite.pl
	run_worldModelTest.pl

	Other tools
	calc_GMM_world_llh.pl
	get_bestWorldModel_GMM.pl
	get_bestWorldModel.pl
	change_entry_transitions_to_tee.pl
	loop_thru_speakersets.pl
	message2log.pl
	raw2wav.pl
	split_file_lists.pl
	create_difference_list.sh
	switch_MASV_spk_data_set.pl

	Description of the Matlab tools
	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

