
ABSTRACT
A reliable method for automatic phonetic transcription of non−
prompted German speech has been developed at the
Department of Phonetics, University of Munich. This "Munich
Automatic Segmentation" (MAUS) system labels and
segments the phonetic constituents of spoken German in a
manner similar to highly trained phoneticians. MAUS has been
used to train automatic speech recognition (ASR) systems as
well as to provide detailed statistical analyses of spontaneous
speech (using the Verbmobil I and RVG I corpora). The
MAUS system is a reliable, automatic means of testing
linguistic hypotheses concerning the phonetic properties of
spontaneous speech and should therefore play an important
role in providing the sort of empirical data required to develop
more realistic models of spoken language.

1. INTRODUCTION
In many cases our scientific work with recorded non−
prompted or even spontaneous German during the last 5 years
ended in results that often differ from our text book knowledge
of German phonetics. In the light of these observations it is
my opinion that the speech sciences including phonetics
should follow a new way (beside the traditional ways that are
of course still to be pursued!) to comply with the problem that
often the scientific models of speech differ significantly from
reality. Therefore, in part 2 I will give some arguments for
computational methods on the basis of large purpose−
independent speech corpora. To give an example of this type
of work the third section gives a brief description of the
’Munich Automatic Segmentation’ (MAUS) method, while the
last part will give three examples where results from MAUS
were used in different experiments or applications. The first
example is a statistical evaluation of well known assimilation
processes at word boundaries; the second and third example
describe experiments to improve Automatic Speech
Recognition (ASR) by exploiting the knowledge about
pronunciation from the MAUS segmentation.

2. PRO COMPUTATIONAL METHODS
Traditional work in the empirical speech sciences (especially
in phonetics) in most cases follows the approved ’divide−and−
analyze’ method. That is, a special question is raised, a
hypothesis is formulated and then a data corpus is designed,
collected and analyzed to verify/falsify the hypothesis. From
the results of analysis (in most cases of statistical nature)
conclusions are drawn about the nature of the problem. In
some cases it has been observed that such
conclusions/rules/laws/etc. are heavily data dependent and
often experiments cannot be repeated successfully on different
corpora. Again, this is an approved and perfectly normal way

for the science community to verify the published results of
their colleagues and can be observed in most other empirical
sciences as well. However, the case of non−repeatable results
seems to be more often reported in the empirical speech
sciences (including phonetics) than others. There are several
possible explanations for this situation; a likely one is the
following: The corpus design or the collection method held
some properties influenced by the a−priori knowledge of the
nature of the following analysis. This does NOT mean that the
corpus was designed to yield a positive outcome of the
experiment on purpose. But for instance certain speech
characteristics were suppressed in the corpus to follow the
’divide and analyze’ method and this may have unexpected
consequences for the investigated phenomena. In other words,
it may be an inherent problem of non−prompted speech (vs.
controlled read speech) itself caused by the huge diversity of
natural speech signals. Every recorded speech signal is a
unique event that can never be reproduced in the same way;
and that is even more true for non−prompted speech. Trying to
characterize the properties of different recordings a skilled
phonetician can easily find about 40 more or less orthogonal
factors that all have a more or less significant impact to the
acoustical wave form, such as mean/max/min formants,
mean/max/min f0, glottal pulse shape, syllable rhythm, nasal
airflow, volume, focus characteristics, place of articulation for
different phonemes, etc. If the above is true, then it follows
that the empirical speech sciences should deal with large
independently created corpora that in turn should reflect reality
in terms of real life situations as nearly as possible.   

Fortunately, this is nothing new: During the last years,
following the free availability of large corpora with non−
prompted or application oriented speech many of the phonetic
science community have already shifted to these data.
Examples are Pat Keating working on switchboard (e.g. [1]),
Steven Greenberg investigating syllables in switchboard (e.g.
[2]), IPO working with the Dutch polyphone database (to
appear) and ongoing work in Germany on the Verbmobil
corpus ([3], [4]) or the RVG corpus ([5], [6]). Interestingly
enough many of these investigations have a falsifying
character, that is models of fluent speech were shown to be
inadequate. 

To summarize this part: My argument is that phonetics (as
well as other empirical speech sciences) should shift as much
as possible to data that  
• allow reliable statistical results  
• contain ’realistic speech’ (as good as it gets)  
• are freely available, so that other colleagues may repeat

experiments 
• are not designed for one specific investigation (at best are

produced by another institution).  
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To give one example for the possible usage of
computational methods in the speech sciences the following
part will give a very short outline about the MAUS method
developed in Munich.  

3. THE MAUS METHOD
3.1. Principle
The ’Munich AUtomatic Segmentation’ (MAUS) system
developed at our lab enables us for the first time to
phonologically transcribe large amounts of non−prompted
speech for statistical analysis. In one sentence, MAUS uses a
constraint search space derived from the canonical
pronunciation of the given utterance in a standard Viterbi
alignment to come up with a broad phonetic transcript (SAM
Phonetic Alphabet, see e.g. [8]) and a segmentation of the
speech wave form. Although the segmentation still lacks the
accuracy of a manual segmentation and labeling, the
transcripts are within the range of the performance of skilled
phoneticians on the same task. For more details about the
MAUS method refer to [9], [10] and [11].   

The step−by−step procedure to analyze a spoken utterance
can be summarized as follows (refer to figure 1):
Input to MAUS is the speech wave and some orthographic
form of the spoken text. The text may be optionally, but not
necessarily extended by noise and silence markers. The text is
parsed into a chain of single words (punctuation marks are
stripped) and passed to a text−to−phoneme algorithm, which is
either rule−based or a combination of lexicon lookup and
fallback to the rule−based system. The resulting string
consisting of phonemic SAM−PA symbols ([8]) is enlarged by
optional inter−word silence symbols and passed to the next
stage called WORDVAR. 

WORDVAR is a production system with re−write rules that
has expertise about German pronunciation. It takes the linear
chain of SAM−PA symbols (the so called canonical
pronunciation of the utterance) and computes an acyclic
directed graph that represents all probable pronunciation
variants of this utterance together with the predictor
probability (nodes contain phonemic/allophonic symbols,
while arcs represent transitions from one symbol to the next;
see figure 2 for an example). Each path through this graph
represents a unique possible pronunciation, while the product
of all probabilities along the arcs gives the total predictor
probability of this variant ([10]).  

The graph and the speech wave is passed to a standard
Viterbi alignment procedure that computes the best combined
probability of acoustical score and predictor probability, in
other words, finds the most likely path through the graph. The
outcome of the alignment process is a transcript in SAM−PA
together with a segmentation of the speech wave in 10msec
increments.

3.2 The rule sets
MAUS can be used in two different modes using two different
sets of phonological rules for the creation of the constraining
pronunciation graph. A rule has the general form of

LBR > LNR ; P
whereL, B, RandN are sequences of SAM−PA symbols andP
denotes the negative logarithm of the rule probability.L andR
define the left and right context of the rule;  B is replaced by N.

The term phonological rule issomewhat misleading here
because the underlying alphabet SAM−PA is not a pure
phonological set but contains allophones as well. However, to
avoid the termphonetic−phonologicthe rules are referred to
as phonologic throughout this paper.

P denotes the a−posteriori probability −log[P(LNR|LBR)]
that the bodyB is replaced byN whenever the sequenceLBR
occurs in the canonical string of the utterance. This implies a
non−recursive application of the rule set; thus the output of a
rule cannot be input to another (or the same) rule. By this we
gain a better control of what the rule sets possibly produce and
reduce the amount of irrelevant hypotheses by several
magnitudes per utterance.  

Currently MAUS uses two types of rule sets (a third is under
development and presented in a separate paper at this
conference). In therule−based modeit exploits knowledge
about pronunciation variation found in the literature and
empirical studies about manually segmented speech compiled
into a set of approx. 6500 re−write rules. Since no statistical
knowledge can be derived from literature, the rule
probabilities of this set are consequently set to 1.0 ([7]). In the
statistical modethe rule set is automatically derived from a
small sample of manually segmented and labeled data
(typically 1h of speech) and each re−write rule is associated
with an a−posteriori probabilityP computed from the pruned
observation frequency ([11]).  

Figure 3 shows a result from a MAUS segmentation of the
German word ’neunzigste’. As may be seen, the affricate /ts/
was reduced to an /s/ and the the second plosive /t/ has a
wrong left boundary. These are typical errors that should be
corrected by the still missing third last stage of MAUS.

A more detailed evaluation of the MAUS performance
compared to human transcribers can be found in [11].

Figure 1. Processing in MAUS



4. EXAMPLES
4.1. Cross−word assimilation  in Verbmobil I
Aside from other investigations the simplest analysis was to
verify whether phonetic/phonologic effects in non−prompted
speech can be statistically verified in the Verbmobil 1 corpus
as well. Our special interest was assimilation effects across
word boundaries. 

The VM1 corpus is a collection of 1956 dialogue recordings
of 779 different speakers produced in 1993 − 1996. It contains
13910 utterances (turns) each with 22.8 words in average. In
each dialog both speakers had to negotiate up to 7 business
appointments using defined calendars. Overlapping speech was
prevented by use of a push−to−talk−button. The whole corpus
was transcribed into an orthographic markup language
containing the spoken words and tags for technical noises,
articulatory noises, linguistic effects such as repair, repeat,
pronunciation variants, proper names, numbers, spellings and
others. Parts of the corpus were labeled and segmented
manually with regards to phonemic segments, prosody and
dialog acts ([3]).

We choose the following re−write rules (formulated in
extended German SAM−PA; ’#’ denotes a word boundary)
from an earlier investigation done at our lab [7]:  

Regressive assimilation of place of articulation  
p#k −> #k   (0/95)       p(A|C) = 0 
t#p −> #p   (106/196)    p(A|C) = 0.3509 
t#m −> p#m  (0/2290)     p(A|C) = 0 
n#p −> m#p  (16/544)     p(A|C) = 0.0286 

Regressive assimilation of manner of articulation  
t#z −> #s   (0/1376)     p(A|C) = 0 

Progressive assimilation of manner of articulation  
n#d −> #n   (360/7444)   p(A|C) = 0.0461 
m#b −> #m   (0/808)      p(A|C) = 0 

s#d −> #s   (7/3131)   p(A|C) = 0.0022 

Voicing assimilation 
t#v −> d#v  (1/1833)   p(A|C) = 0.0005 
t#v −> t#f  (0/1834)     p(A|C) = 0 
t#d −> #d   (3053/2404)  p(A|C) = 0.5595 
t#d −> #t   (0/5457)     p(A|C) = 0 

Deletion of voiceless fricatives  
t#h −> t#   (41/852)     p(A|C) = 0.0459 
N#h −> N#   (4/45)       p(A|C) = 0.0816 
C#h −> C#   (51/947)     p(A|C) = 0.0511 
x#t −> #t   (1/324)    p(A|C) = 0.0031 
x#h −> #h   (3/174)    p(A|C) = 0.0169

We analyzed 303446 spoken words with the MAUS method
and counted the appearance of the above assimilations. The
total numbers (appeared/not appeared) are given in brackets in
the second column; the a−posteriori probabilities for the
occurrence of the assimilation A given the context C is given
in the third column. As you can see from the raw results, six
out of seventeen assimilations never occurred in the MAUS
segmentation. 

This result does not automatically imply that none of the
listed assimilations can be found in the data; it means that the
underlying statistical models in MAUS decided to model the
speech wave in a way to maximize the overall Likelihood
between data and model. For instance, it might be that the
regressive assimilationt#m −> p#m was very sparse in the
bootstrap set of MAUS and was therefore pruned in favor of
other observations.   

 4.2. Regional Variation in Verbmobil I
Another experiment derived from our massive data approach
was the investigation whether the knowledge of the dialect
class of an unknown speaker might be a benefit for ASR in the
Verbmobil speech recognizer. This work was done by N.

Figure 2. The MAUS  pronunciation graph of the German word ’neunzigste’ (ninetieth)



Beringer and P. Regel at the Daimler Benz research center in
Ulm, Germany in 1997 (details in [4]). The basic idea was to
sort training speakers of the Verbmobil corpus into different
dialect bins and derive dialect specific lexica for each group
from the MAUS segmentation of the training corpus. In a
cheating experiment where the dialectal class of each test
speaker was known to the recognizer, its performance was
evaluated on a bench mark task.  

Although no significant improvements could be achieved in
this experiment, we will continue to pursue this topic in future
work at our lab in Munich on the RVG1 corpus, which
contains a better controlled regional variation of speakers
([5]). Furthermore, we learned from these experiments that it
is crucial to involve the acoustic modeling into the task of
pronunciation modeling on the lexical level.  

 4.3. General Pronunciation  Model for ASR
In a different approach a general statistical pronunciation
model for each lexical entry was derived from the MAUS
transcriptions ([12]). A standard HTK recognizer was used on
the 1994 Verbmobil evaluation data to verify the model. To
summarize the results the only significant improvements in
terms of word recognition were achieved by using the same
MAUS transcriptions for the training of the acoustical models
as well as  the lexical model.
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Figure 3. MAUS segmentation of the German word ’neunzigste’ (Display by SFS)


