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Abstract
Two speech feature sets, RMS rhythmicity and formant fre-
quencies F1-F4, are analyzed for their ability to distinguish al-
coholized from sober speech. We describe the statistical frame-
work based on the Alcohol Language Corpus (ALC), includ-
ing other factors such as gender, age and speaking style, and
its application to our case. Rhythm features are calculated us-
ing a new method based solely on the short-time energy func-
tion; formant features are derived using the standard formant
tracker SNACK. Our findings indicate that 3 rhythm and 3 for-
mant features have a high potential to detect intoxication within
the speech data of a subject. We also tested the hypothesis that
vowels are more centralized in the F1/F2 space for alcoholized
speech, but found that, on the contrary, subjects tend to hyper-
articulate when being tested for intoxication.
Index Terms: alcoholized speech, rhythm, formants, Alcohol
Language Corpus, BAS, vowel centralization

1. Introduction
Can alcoholic intoxication be reliably detected from the speech
signal alone?
This question has been debated in the field of forensic phonet-
ics for a long time. The answers of earlier studies are incon-
clusive (e.g. [1],[2],[3],[4],[5],[6],[7]): a number of speech fea-
tures have been investigated with regard to alcoholic intoxica-
tion (AI) and with differing, sometimes contradicting results,
most likely depending on the empirical data analyzed. As for
technical applications, to our knowledge nobody has yet pre-
sented an algorithm which automatically derives an estimate of
the blood alcohol concentration (BAC) from the speech signal.

Were such an algorithm to be found, it would potentially
help not only forensic sciences but could also allow pre-emptive
alcohol testing in the automotive environment, as discussed in
[9].

In the years 2007 to 2010 the Bavarian Archive for Speech
Signals (BAS) located at the Ludwig-Maximilians-Universität,
München collected alcoholized and sober speech of 77 fe-
male and 84 male speakers. The Alcohol Language Corpus
(ALC) is publicly available so that other interested researchers
may replicate our findings or perform their own studies on al-
coholized speech1. ALC comprises different speech styles:
read speech, list style, semi-spontaneous (picture task), spon-
taneous speech (dialogue) and situational prompted commands
from the automotive environment (see [11] for details on Sit-
uational Prompting). The speech content covers simple digit
strings (telephone/credit-card numbers), word lists, addresses,
tongue twisters, picture descriptions, interview style answering
and free dialogue about casual topics. Each speaker provided

1See http://www.bas.uni-muenchen.de/Bas/BasALCeng.html

roughly 6min of speech in AI and 12min in sober condition. In
addition, 20 speakers were recorded a third time in the exact
same situation as in the AI recordings but sober to provide a
control group for statistical reference analysis. The speech sig-
nals (close and distant microphone) were recorded in the same
car environments (two different models) for the sober and in-
toxicated condition. All recordings were manually transcribed
and tagged for para-linguistic events. An automatic phone-
mic segmentation and labeling into the German SAM-PA pho-
netic symbol set is provided for all recordings2. Meta informa-
tion about speaker characteristics (age, dialectal origin, height,
weight etc.) and recording conditions are provided to allow sta-
tistical testing for influencing factors other than alcoholization.
For a more detailed description of ALC see [10].

Based on these empirical data we investigated whether
two sets of features could distinguish sober from alcoholized
speech. One feature set concerns the rhythm of speech, that is
features that are derived from the dynamics of the sound pres-
sure energy (the alternation of relatively loud and quiet speech
parts). The other set of parameters concerns the resonance of
the vocal tract, that is the location of the formants and their
respective relation to long-time averaged centroids in the two-
dimensional F1-F2 space (also known as the ’vowel space’).

The paper is structured as follows: the next section
discusses some general issues when dealing with individual
speaker features and the statistical framework applied. Sections
3 and 4 describe two different feature sets under investigation,
how they were obtained automatically from the speech signal
and the statistical results.

2. Statistical Framework
When dealing with slowly changing speaker conditions like
tiredness, stress and also alcoholization we hardly ever observe
general ’laws’ valid for all speakers on how the linguistic and
phonetic features of the speech signal behave. We rather find
that speaker groups or even individual speakers have their own
idiosyncratic way of expressing these states. For example, if
we measure the average fundamental frequency f0 over an ut-
terance of alcoholized speech and compare this to sober speech
of the same speaker, we observe an overall tendency of the fe-
male speakers to rise their f0 significantly independent of the
measured AI, but we also find a small group of female speakers
who behave the other way round. Male speakers behave differ-
ently and are more inconsistent than female speakers, but nearly
all of them increase or decrease f0 when being intoxicated ([9]).

When evaluating linguistic or phonetic features derived
from the speech signal concerning their potential to distinguish
between sober and alcoholized speech, we therefore look for

2Provided by the MAUS system ([8]).



relative changes within the data of an individual speaker rather
than the whole population. For the application of these findings
in forensic sciences or preemptive alcohol detection this is not a
problem since usually there is plenty of sober speech available
for the subject under consideration.

In the following sections we discuss our test statistics, the
calculation of correlations and pattern recognition frameworks.3

2.1. Test Statistic

Let the feature f [s(t)] be derived from the speech signal s(t).
Then we call f [s(t)] the dependent test variable and the fol-
lowing factors the independent test variables which are fur-
ther sub-categorized into within speaker factors, alcoholization
(alc), speech style (sty), vowel class (vow), and between speaker
factors, age (age) and gender (sex):

alc alcoholized (a) / non-alcoholized (na) within
age young (21-36) / old (36-65) between
sex female (F) / male (M) between
sty read (r) / spontaneous (s) / command (c) within
vow /a:/, /i:/, /u:/ within

To test the dependent variable we apply either a repeated mea-
sures ANOVA (RM-ANOVA) or a mixed model (MM) with the
speaker ID as the random variable to filter out between speaker
variability.

2.2. Correlation

Since the ALC corpus does not contain speech data of differ-
ent BAC levels produced by the same speaker, a test for linear
or non-linear correlation between the feature f [s(t)] and BAC
within the data of one speaker is not possible. To test for linear
dependencies across a group of speakers the measured features
have to be normalized accordingly. Thus individual speaker be-
havior, in the sense of different linear models, cannot be cap-
tured within our experimental setting4.

2.3. Model Fitting and Prognosis

A first step to test potential features for alcohol detection is to fit
a logistic regression model for each individual speaker and es-
timate the prognosis with regard to alcoholization (on the same
data). Based on 121 speakers from ALC and using MFCC as
speech features, such a model yields an average prognosis rate
of 77% ([14]). However, the prognosis rates across speakers
vary from 64-95%, indicating that alcohol detection is indeed a
highly speaker dependent task. Interestingly we found no de-
pendencies to gender, age or the actual blood alcohol concen-
tration in this model.

2.4. Pattern Recognition

The classical approach to divide the data set into two disjunc-
tive sets of training and test speakers (using for instance a leave-
one-out schema) does not work in this case for the same reasons
discussed above. The solution is to divide the corpus into two
sets of development and test speakers first and then divide the
data sets of each individual test speaker into four parts:

sober train sober test
alcoholized train alcoholized test

3Note that this contribution deals with test statistics only; neverthe-
less we discuss correlation and pattern recognition for the benefit of
other researchers using the ALC speech corpus.

4It is however possible to compensate for simple biases in the data,
e.g. the fundamental frequency of female and male speakers.

The method and heuristics of the feature extraction are then cal-
culated using the data of the development speakers only. Finally
the derived method is applied to the training data sets of each
individual test speaker to achieve a speaker dependent model,
which then in turn can be tested using the test data sets of the
speaker. By this we yield individual scores and failures for each
speaker which can then be added up to calculate overall perfor-
mance scores.

3. Rhythm Features
The short-time sound pressure energy of speech (RMS) repre-
sents a sequence of alternating relatively loud and quiet parts
and thus can be used to describe rhythmicity. Also RMS has the
advantage that it can be easily derived from the speech signal
without any linguistic information such as the CVC sequence.
We calculate RMS values for the ALC data using a Blackman
window with 200 ms size and a 20 ms shift. All RMS data
are then normalized to the total mean within each utterance to
yield comparable measurements. From the obtained normalized
RMS we retrieve a sequence of data points in the RMS trajec-
tory at local minima and maxima, whose RMS values are below
or above the mean RMS of the total recording. This sequence
naturally contains clusters of minima and maxima as well as
single minima and maxima. To obtain a continuous alternating
sequence in the form min-max-min-max... we derive exactly one
representative minimum/maximum from each cluster, where the
representative minimum/maximum is simply defined as the one
with the lowest/highest value within the cluster. The resulting
min-max sequence forms the base material for a set of measures
describing what we call RMS rhythmicity.
For this study we concentrate on measures based on the RMS
maxima only. For all recordings belonging to the same factor
combination (see section 2.1) we calculate the mean (A) and
standard deviation5 (B) of the time delay between successive
maxima, the median and quarter quantile distance of the dif-
ferences of the RMS values between successive maxima (C,D),
the same for absolute differences (E, F), and finally the quarter
quantile distance of the relative distance of maxima and minima
to the normalized mean RMS (G and H). We also adopted the
normalized Pairwise Variability Index (nPVI) as introduced by
Grabe and Low [15] to describe the average durational differ-
ence between successive periods of time between maxima (I).
All those measures were only applied to data points within ut-
terance boundaries.
Measures A and B reflect the timing and regularity of the oc-
currence of maxima: a higher mean would be an indicator for a
lower speech-rate and a larger SD could indicate an increased ir-
regularity in the speech rhythm. C,D,E and F reflect the change
in the energy dynamics of the speech signal whereas G and H
reflect the energy dynamic itself. Measure I represents changes
in the sequential structure of the speech signal based on the
RMS maxima.

Table 1 shows the differences of the measures between
sober and alcoholized speech, giving the direction of change
and the speech style for which differences are significant (other
factors did not interact). All measures rise with alcoholization
and differ significantly between sober and alcoholized speech
(RM-ANOVA, p<0.001). The statistical analysis yielded no
dependency to the factor sex but significant interactions with

5For A and B we apply the less robust mean and SD since the mea-
surements are time-discrete with a 20ms interval; the remaining (con-
tinuous) measures are estimated by the more robust median and quarter
quantile distance.



Table 1: Significant differences for measures A to I based on the
data of 128 speakers for the three speech styles. ⇑ : rises with
alcoholization.

A B C D, E
alc ⇑ ⇑ ⇑ ⇑
score p<0.0001 p<0.0001 p<0.001 p<0.0001
sty r,s r,s c r,s,c

F G H I
alc ⇑ ⇑ ⇑ ⇑
score p<0.0001 p<0.0001 p<0.0001 p<0.0001
sty r,s,c r,s r,s r

the speech style (sty)6: the last line in Table 1 indicates those
speech styles for which the feature was found to be significantly
different.

As an example the box-plots in Figure 1 show the differ-
ence between alcoholized and sober speech, averaged for both
genders and the three styles of speech for the measure E (me-
dian of the absolute value of the differences of the RMS values
between maxima). The tendency of E to increase from sober to
alcoholized speech for all conditions is clearly visible.7
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Figure 1: Box-plots of measure E for female (F) and male (M)
speakers, the speech styles (c,r,s) and alcoholized (a) vs. sober
(na) speech.

4. Formant Features
Formants are the primary resonances of the vocal tract caused
by different geometric configurations of the articulating organs.
They are used by listeners to distinguish phonemic minimal
pairs, for instance vowel classes and transitions from vowels
into different consonants. A formant is defined by its frequency

6Factors age and vow have not been tested here.
7Note that the box-plots show data averaged over a large number

of speakers and are therefore not as distinguishable as in the data of a
single speaker.
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Figure 2: Vowel triangle in the F1/F2 plane. The solid line
combines vowel centroids of sober speech, the dashed line those
of alcoholized speech.

(or position), amplitude and bandwidth; for this study we con-
centrate on the frequencies of the first four formants F1− F4.

Formant measurements usually require phonetic segmenta-
tion and labeling (to determine the location of the vowel cen-
ters) and a manual correction of the automatically detected for-
mant trajectories. Since we are looking for an automatic method
to distinguish sober from AI speech, we first apply the au-
tomatic segmentation tool MAUS ([8]) and then the formant
tracker of the SNACK package8 without any subsequent man-
ual correction to the speech recordings of 131 speakers (67 f
+ 64 m). The formant tracker is configured to track the first 4
formants and uses a nominal F1 frequency of 531Hz for male
and 595Hz for female speakers9. We then derive the median
Fm and quarter-quantile distance Fqq of the formant frequen-
cies F1 − F4 from the 30% mid-section of each vowel seg-
ment, average these 8 values over all vowels within one fac-
tor combination (speaker(sex), alc, vow, sty, see section 2.1)
and test them for significant differences using repeated measure
ANOVA (random factor is the speaker).

F1m increases significantly in alcoholized vs. sober speech
(F=16.5, p<0.0001) but post-hoc Tukey tests show that this
is only significant for the vowel /a:/ (although the tendency
for /i:/ and /u:/ is the same). F2m, F3m and F4m do not
differ significantly. F1qq shows a weak significant increase
(F=4.05, p=0.046) but only for the vowel /u:/. F3qq has a
non-significant tendency (F=3.84, p=0.051) and finally F4qq

(F=8.61, p=0.0040) increases significantly for all factor combi-
nations.

To produce clearly distinguishable vowels the articulators
(lips, tongue, jaw) have to move into the correct target posi-
tions, which requires time and effort. It is therefore reasonable
to predict that fast, spontaneous or blurred speech will show

8http://www.speech.kth.se/snack/
9Based of average vocal tracts lengths of 16cm for male and 14,3cm

for female speakers given by [13].



vowel formants that are not in the ideal target positions (see
for instance Lindblom’s hypo-hyper speech continuum [12]). A
common way to demonstrate the separability of vowel classes
is to plot measured formant positions into the two-dimensional
F1-F2 vowel space which is roughly spanned between the Car-
dinal Vowels /i/, /a/ and /u/ (vowel triangle).

Based on these assumptions we hypothesize that the fre-
quencies of F1 and F2 will be less distinguishable (less apart)
for the tense, lexically accented vowels /a:/, /i:/ and /u:/ in alco-
holized speech than in sober speech.

Let ~Cf and ~Cm be the centroids of all formant frequen-
cies F1m and F2m of female and male speakers in the two-
dimensional F1-F2 space. Then for a given sample of speech
(= vowels within a factor combination) the amount of ’being
apart’ ED can be measured by the sum of the Euclidean dis-
tances from the vowel centroids in this sample ~Ca, ~Ci and ~Cu

to the overall centroid ~Cf |m.

ED =
X

x=a,i,u

s X
k=F1,F2

(Cx,k − Cf |m,k)2

Figure 2 shows the vowel triangles of female speakers for sober
(solid) and alcoholized speech (dashed). We clearly see a sig-
nificant change in ED (F=20.75, p<0.0001 for both genders),
which contradicts our hypothesis, because sober speech appears
to be more centralized than alcoholized speech. Post-hoc Tukey
tests show that only female speakers and mainly the vowel /u:/
contribute to this significant change.

One possible explanation for this surprising result is that
female speakers try to compensate for their impaired state by
using hyper-articulated speech. This makes sense since the
recorded subjects knew that they are being tested and tried to
act as naturally as possible to ’pass the test’. Assuming that the
rhythm measure A (section 3) is an inverse representation of the
overall speaking rate (which is lowered for alcoholization) an-
other explanation could be that the speakers simply have more
time to reach the articulatory targets.

Table 2 summarizes the formant measurements that distin-
guish alcoholized from sober speech with regard to direction of
change and factors for which the change is significant. Only

Table 2: Significantly different formant measurements based on
the data of 131 speakers. ⇑ : rises with alcoholization.

F1m F1qq F4qq ED
alc ⇑ ⇑ ⇑ ⇑
score p<0.0001 p=0.046 p=0.004 p<0.0001
sex F,M F,M F,M F
vow /a:/ /u:/ /a: i: u:/ /u:/
sty r,s,c r,s,c r,s,c r,s,c

one feature, the quarter-quantile distance of the forth formant
F4qq , shows a highly significant within-speaker increase for al-
coholized vs. sober speech in both genders, for all vowel classes
and speaking styles. Other significant features are either depen-
dent on gender, vowel class or both.

5. Conclusion
We presented a statistical framework to investigate the ability
of features derived from the speech signal to distinguish al-

coholized from sober speech. Based on a subset of 128/131
speakers we analyzed 9 rhythm and 9 formant features auto-
matically derived from the speech signal. The rhythm features
(RMS rhythmicity) were based on a simple RMS measurement
and peak picking algorithm, while formant frequencies were
calculated using SNACK. Three formant and three rhythm fea-
tures show highly significant differences independent of gender
and speaking style. Contrary to our expectation vowel formants
did not centralize in the F1/F2 space for alcoholized speech
but rather decentralize. We explain this by the increased com-
pensatory hyper-articulation of alcoholized subjects when being
tested for intoxication. Other experiments based on MFCC fea-
tures ([14]) using the same database indicated an average prog-
nosis rate of 77%. Whether these baseline results may be im-
proved by incorporating the feature sets described here will be
the subject of future work.
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