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ABSTRACT

In this paper we present a hybrid statistical and rule-based

segmentation system which takes into account phonetic vari-

ation of German. Input to the system is the orthographic

representation and the speech signal of an utterance to be

segmented. The output is the transcription (SAM-PA) with

the highest overall likelihood and the corresponding segmen-

tation of the speech signal. The system consists of three

main parts: In a �rst stage the orthographic representation

is converted into a linear string of phonetic units by lexicon

lookup. Phonetic rules are applied yielding a graph that con-

tains the canonic form and presumed variations. In a second

HMM-based stage the speech signal of the concerning utter-

ance is time-aligned by a Viterbi search which is constrained

by the graph of the �rst stage. The outcome of this stage

is a string of phonetic labels and the corresponding segment

boundaries. A rule-based re�nement of the segment bound-

aries using phonetic knowledge takes place in a third stage.

1. INTRODUCTION

For many applications in speech processing as in ASR and

speech synthesis (e.g. PSOLA) reliable segmentation and la-

beling of large speech databases is required. Also as ASR

increasingly uses discriminative techniques and tackles the

challenge of analyzing spontaneous speech the demand for

statistically based pronunciation models in di�erent lan-

guages is growing.

Because of the large amount of data in today's speech cor-

pora time-consuming manual segmentation is virtually im-

possible. Furthermore, it is subjective and prone to incon-

sistency, because no two human experts are likely to produce

exactly the same segmentation for the same utterance. Not

even the same trained person will come to exactly the same

transcription if asked to repeat the segmentation of the same

utterance [1].

On the other hand automatic methods like segmental-k-

means are feasible, but mostly a forced alignment of the

speech signal according to just one given linear string of

labels is done. Hence, pronunciation variations occurring

in natural speech are mapped onto the segmental models

of this phonetic unit sequence. These models are certainly

able to model some of the pronunciation processes but not

all: elisions and insertions can hardly be covered in this way.

Furthermore the discriminative power of the models is weak-

ened.

In previous work [2] this problem was addressed by optionally

taking the phonetic unit sequence to be aligned from manual

transcriptions instead of using a pronunciation dictionary for

this purpose. This led to satisfactory results but, however,

again involved manual transcriptions.

In this paper we present a system which accomplishes the

detection of the pronunciation variant and its time-alignment

in one step. The possible variants are obtained by applying

pronunciation rules to the canonic form of an utterance. The

term canonic form refers to the standard pronunciation of an

utterance based on a pronunciation dictionary that has just

one entry for each orthographic word. The canonic form

is a simple transform (lexicon lookup and concatenation) of

the orthographic representation and can be represented by

a string of phonetic symbols. The main system divides into

three parts which are described in the following sections:

� Generation of a graph which contains all presumed pro-

nunciation variants (section 2.).

� HMM-based time alignment of this graph to the speech

signal (section 3.).

� Re�nement of the segment boundaries (section 4.).

The sections 5. and 6. show the results and give a short

discussion.

2. GENERATION OF VARIANTS

A graph structure was chosen for representing the variants,

because a simple list of possible variations, as used in previ-

ous work [5], turned out to be very time consuming and lead

to redundant steps during time alignment.

The nodes of the graph correspond to phonetic symbols taken

from the extended SAM Phonetic Alphabet of German [6]



and the edges to possible transitions which may have a prob-

ability associated with them. By choosing a path from the

initial node of the graph to the terminal node a number of

symbols are visited subsequently. These symbols make up a

string of phonemes i.e. a possible pronunciation variant (or

the canonic form) of an utterance. The following subsections

describe what the rules look like and how they are applied

to the canonic form to obtain the graph.

2.1. Set of Pronunciation Rules

The generation of the graph is based on a set of pronuncia-

tion rules. The rules were selected by analyzing manual tran-

scriptions and extrapolating the results, with the aim that

pronunciation processes well known from literature (e.g [3])

are also covered. Currently, the rule set consists of approx.

1500 rules. For details refer to [7].
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extended SAM-PA of German.

2.2. Application of the Rules

As a �rst step the canonic form of an utterance is repre-

sented as a graph with just one path from the initial to the

terminal node. Along this path a start symbol followed by

the phonetic symbols of the canonic form and �nally an end-

ing symbol are emitted. The resulting graph is called the

canonic form graph G

(0)

. Every node in this graph has just

one successor (except for the terminal node).

In order to get the minimum number of nodes and edges

that have to be added to G
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for each rule two additional
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symbols no nodes have to be inserted.

Next, all rules are applied subsequently to G

(0)

according

to the algorithm described in Table 1. Note that rules are

applied only to the canonic form graph G

(0)

. In this way

all presumed variations are covered in the graph without

redundant nodes and edges. All hypotheses contained in the

graph are judged to have an equal a priori probability. The

edges get scored with transition probabilities to ful�ll this

presumption.

Figure 1 shows the graph of a single word. The initial and

terminal nodes are marked with the symbols \<" and \>"

respectively. Graphs of larger utterances may contain a

huge number of hypotheses (up to 2
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end for

repeat

add pending transitions from inserted nodes to succes-

sors of nodes in G

(0)

(This may increase the number of

predecessors of other nodes in G

(0)

and introduce new

pending transitions);

add pending transitions from predecessor nodes in G

(0)

to inserted nodes (This may increase the number of

predecessors of other nodes in G

(0)

and introduce new

pending transitions);

until no more transitions have to be inserted

Table 1: Algorithm for the application of pronunciation

rules

10s length).

3. HMM-BASED ALIGNMENT

In order to do the time alignment a data driven Viterbi beam

search in a HMM state space constrained by the hypotheses

contained in the graph is performed. We use context-free

semicontinuous HMMs [8] modeling 42 the phoneme classes

of SAM-PA. The statistical models have the following char-

acteristics:
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Figure 1: Graph containing all presumed variations of the word \Regensburg" /reg@nsbU6k/

� Features: 12 cepstral coe�cients + energy + zero-

crossing rate + �rst and 2nd derivative every 10ms.

� 5 codebooks, diagonal covariance matrices.

� 3 to 6 states per HMM.

� Initialization with data segmented by hand (2400 utter-

ances from 12 speakers).

The state space is made up of all stages of HMMs which

correspond to the symbols of nodes in the graph. IfM is the

number of nodes in the graph, S

m

with m = 0 : : :M � 1 the

number of stages of the HMM corresponding to the node N

m

and T is the number of time-steps (i.e. the number of feature-

vectors to be processed), the state space is a (

P

M

m=0

S

m

)�T

matrix.

At the �rst time step all successors of the initial node and

a silence model are started up. That means that all grid

points in the �rst time slot of the state space corresponding

to initial states of these models are activated.

During the search active grid points are propagated accord-

ing to the possible transitions within the HMM. Each time a

state of a HMM is reached that allows a transition to another

HMM, new models are launched according to the successor

nodes in the graph. This is done by propagating the grid

point of this state to grid points in the next time slot repre-

senting the initial states of these new models.

At each grid point in the next time slot the transitions be-

tween HMMs compete with those within HMMs and the best

predecessor for each point is selected taking into account the

acoustic score and the transition probabilities within HMMs

and between the nodes of the graph.

Optionally, unlikely hypotheses i.e. grid points with low

score may be pruned away. This speeds up the alignment

essentially but however bears the risk of loosing the hypoth-

esis with the highest overall likelihood.

The procedure described above constrains the search to the

variants included in the graph. The actual labeling and

segmental information is obtained by backtracking of the

Viterbi path.

4. REFINEMENT

Since the preprocessing computes the feature vector over a

Hamming window of 20ms length which is shifted in 10ms

steps the boundaries obtained by the backtracking lay on

a 10ms grid and have a (theoretical) inaccuracy of up to

10ms. Furthermore, some acoustic events cannot be properly

modeled with a low time resolution like this.

The aim of the re�nement stage is to correct the boundaries

determined by the previous stage with methods that work on

a much higher time resolution then the Viterbi preprocessing.

Currently a time domain method is used to shift the bound-

aries of vowels to the positive zero-crossing which precedes

its peak amplitude. Other boundaries are simply shifted to

the next zero-crossing.

1

5. RESULTS

One possibility to estimate the quality of the automatic seg-

mentations is to compare them to segmentations produced

by hand. The di�erence in terms of the transcription symbols

assigned to the speech signal and the segment boundaries has

to be considered.

To compare two segmentations, �rst a dp-match is performed

which �nds the best match between their transcription sym-

bols. We de�ne M =

2n

c

(n

1

+n

2

)

as the match between the

two segmentations where n

c

is the number of corresponding

symbols, n

1

and n

2

is the total number of symbols in each

segmentation. For the evaluation of the segment boundaries

a distribution of relative frequencies of the deviation is calcu-

lated. Only boundaries of subsequent segments, which have

been assigned to the same symbols in both segmentation are

considered.

A fundamental problem lies in the fact, that a unique correct

transcription of an utterance does not exist. Therefore, a ref-

erence segmentation can only be de�ned arbitrarily. Instead

of selecting a single transcription as a reference, we compared

as many transcriptions of the same data as available to each

other and to the automatic transcriptions.

Table 2 shows the average match M

0

between 3 di�erent

manual segmentations of one speaker (200 utterances) from

the PHONDAT II [6] corpus and an automatic segmenta-

tion of the same data. As it can be seen the human seg-

menters di�er less from each other (match between 93.1%

and 94.4%) than from the automatic segmentations (match

1

These guidelines are obligatory at the IPSK for manual tran-

scriptions. They are also applied to automatic transcriptions for

comparability
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Figure 2: Distribution of relative frequencies of boundary deviation d

chr kat man AUT

chr 100.0 93.5 93.1 88.1

kat 93.5 100.0 94.4 87.5

man 93.1 94.4 100.0 88.2

Table 2: Comparison between 3 manual segmentations (chr,

man, kat) and an automatic (AUT) of one speaker (200 ut-

terances) of the PHONDAT II corpus. The numbers give the

average match M in percent. See text for details

between 87.5% and 88.2%), but the di�erence is less than

7%.

Figure 2 shows the distribution of relative frequencies of the

boundary deviation d between an automatic and a manual

segmentation. About 15% of all evaluated segment bound-

aries match exactly (jdj < 0:5ms deviation). There are some

equidistant maxima with decaying relative frequency. Their

distance is approximately the pitch period, because the re-

�nement stage shifts the boundaries to the zero-crossings

preceding the peak amplitude. The two peaks at the edges

of the range are the sum of extreme outliers (jdj � 50ms

deviation). On an average 59% of all boundaries di�er less

than 10ms (basis: 1 speaker PHONDAT II, 200 sentences, 3

manual segmentations vs. one automatic segmentation).

A thorough analysis of the results obtained with this systems

going into phonetic details can be found in [4].

6. DISCUSSION AND FUTURE

WORK

The results show that high quality segmentations of speech

signals which can compete with manual ones may be ob-

tained automatically if phonetic knowledge is incorporated

in the segmentation process. In our approach a set of pro-

nunciation rules is the basis of this knowledge. It is generic

and not �ne tuned to any corpus. The aim is to cover as

many variants as possible, even if they are not very likely

and to let the acoustics, i.e. the statistic models decide,

which is the most likely to have been occurred. Therefore

the rule set is quite large. However, this requires a powerful

HMM stage because with a growing number of hypotheses

contained in the graph, the task of aligning tends more and

more to speech recognition.

A reliable statistical survey of pronunciation variants on the

other hand, which could be used to control the Viterbi search

by pruning away unlikely variants, is hard to obtain, because

the available amount of speech data segmented by hand is

not su�cient for this purpose. A feasible way would be to

start with a large rule set and carefully train it to the task by

biasing variants that occur frequently during segmentation.

This leads of course to a task speci�c rule set.

As we are currently extending the system to spontaneous

speech, which naturally contains more pronunciation vari-

ants than read speech, a large rule set is certainly necessary.

Another way to increase the performance of the system is

to improve the HMM stage. Therefore we are integrating a

powerful ASR-system for spontaneous speech in our system.

Preliminary test show encouraging results.
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