HMM-Synthese (Grundzüge)

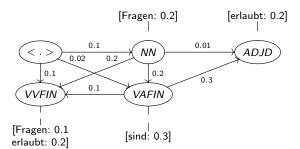
Uwe Reichel
Institut für Phonetik und Sprachverarbeitung
Ludwig-Maximilians-Universität München
reichelu@phonetik.uni-muenchen.de

9. Januar 2017

Inhalt

- HMM-Grundlagen
- HMM und Phonemerkennung
- HMM-Synthese

HMM-Grundlagen


HMM: $\langle Q, K, S, A, B \rangle$

- $Q = \{q_i\}$: Menge von Zuständen
- K: Ausgabealphabet
- $S = \{s_i\}$: Startwahrscheinlichkeiten, dass man sich zu Beginn in Zustand q_i befindet
- $A = \{a_{ij}\}$ Transitionswahrscheinlichkeiten von Zustand q_i nach q_i
- $B = \{b_{jo}\}$ Emissionswahrscheinlichkeiten für Beobachtung o in Zustand q_i

HMM-Grundlagen

Symbolverarbeitung

- Beispiel Part-of-Speech-Tagging (vgl. POS-Folien)
- $B = \{b_{io}\}$ sind eindimensional: P(Wort|POS)
- Emission ist kategorial (hier: ein Wort)

HMM-Grundlagen

Signalverarbeitung

- Emissionswahrscheinlichkeiten $B = \{b_{jo}\}$ sind mehrdimensional: $P(e_1, e_2, ... | q_i)$
- e_i: Signalcharakteristika (Dimensionen), z.B. Gesamtenergie, Mel-Cepstralkoeffizienten
- mögliche Modellierung als mehrdimensionale Gaußglocken
- Emissionen ei sind kontinuierlich

HMM in der Phonemerkennung

HMM_X für Phonem X

- **Zustände** *Q*: Teilsegmente des Phonems *x*
- Emissionswahrscheinlichkeiten B: Wahrscheinlichkeiten für akustische Ausprägungen von x in den entsprechenden Teilsegmenten

HMM in der Phonemerkennung

Phonemerkennung

- Aufgabe:
 - klassifiziere Sprachsignal s
 - finde dasjenige HMM_x, durch das s mit der größten Wahrscheinlichkeit erzeugt wird
- Lösung:
 - berechne für jedes HMM_x: P(s|HMM_x) mittels Viterbi (vgl. POS-Folien)
 - Zielphonem $\hat{x} = \arg \max_{x} P(s|\text{HMM}_{x})$

Training

- Full-Context-HMM: je ein HMM $_{x,c}$ für ein Phonem x in einem bestimmten Kontext c
- c: Phonemumgebung, prosodischer Kontext, Emotion, ...
- Emissionen kontinuierlich, Emissionswahrscheinlichkeiten B mehrdimensional
 - Mel-Cepstral-Koeffizienten
 - F0
 - Segmentdauer
 - Intensität

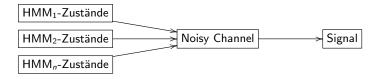
Sparse-Data-Problem

- Trainingsmaterial reicht nicht aus, um für jedes Phonem x in jedem Kontext c die Parameter für HMM_{x,c} verlässlich zu schätzen
- Reduzierung der Anzahl unterschiedlicher Kontexte durch Clustering nach akustischer Ähnlichkeit
- Erstellung eines Entscheidungsbaums, der in Abhängigkeit von Phonem x und Kontext c das passende HMM $_{x,c}$ auswählt

Anwendung

- Input: segmentale, prosodische etc. Zielspezifikationen wie in Unit-Selection-Synthese
- Auswahl des passenden HMM mittels Entscheidungsbaum
- kontextabhängige Phonemsequenz

$$< x_1, c_1 > \ldots < x_n, c_n >$$
:
Verkettung von $HMM_{x_1,c_1} \ldots HMM_{x_n,c_n}$


 Generierung des Signals über den wahrscheinlichsten Pfad durch die HMM-Kette (mittels Viterbi)

Gemeinsamkeiten zwischen Phonemerkennung und Synthese

- Es werden kontinuierliche Werte emitiert.
- Emissionswahrscheinlichkeitsverteilungen sind mehrdimensional.

Unterschiede zwischen Phonemerkennung und Synthese

• Erkennung:

- ein HMM_x je **Phonem** x
- bekannt: Kanalausgabe (das akustische Signal)
- gesucht: Kanalinput, d.h. dasjenige HMM_x, das dem Signal am wahrscheinlichsten zugrundeliegt

Synthese:

- Full-Context: ein $HMM_{x,c}$ je Phonem x und Kontext c
- bekannt: Kanalinput, d.h. das zu den segmentalen, prosodischen etc. Zielspezifikationen passende HMM_{x.c}
- **gesucht: Kanalausgabe**, d.h. das durch $HMM_{x,c}$ am wahrscheinlichsten generierte akustische Signal

Modularisierung

- z.B. Trennung von Quelle und Filter
 - Training von $HMM_{q,c}$ und $HMM_{f,c}$
 - q Quelle: Parameter des Anregungssignals
 - f Filter: Filterparameter
 - Anwendung: getrennte Steuerung von Quell- und Filterparametern
 - Erhöhung der Flexibilität

Vorzüge

- geringer Speicheraufwand: HMM-Parameter statt
 Datenbank mit Sprachsignalen
- hohe Flexibilität:
 - kontinuierliche Steuerung der akustischen Parameter
 - getrennte Modellierung von Quelle und Filter
 - Generierung neuer Stimmen

Nachteile

 Vollsynthese → derzeit noch schlechtere Qualität als bei Unit-Selection

