Zusammenfassung von Hombert et al (1979) und Löfqvist (1989)

Jonathan Harrington

Diachrone tonale Entwicklung in vielen asiatischen Sprachen

/ba, pa/ →/pá, pà/

Synchron ist f0 höher nach /pa/

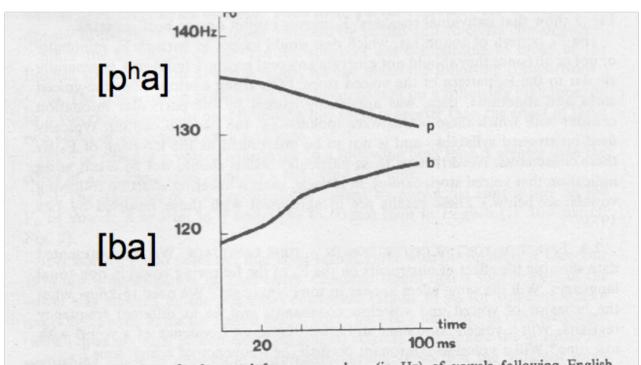


FIGURE 1. Average fundamental frequency values (in Hz) of vowels following English stops (data from five speakers). The curves labeled [p] and [b] represent the values associated with all voiceless and voiced stops, respectively—regardless of place of articulation. The zero point on the abscissa represents the moment of voice onset; with respect to stop release, this occurs later in real time in voiceless aspirated stops.

Erklärung dieser mikroprosodischen Einflüsse

I. Aerodynamische Hypothese

f0 ist hoch nach hohem transglottalen Luftdruck (Tg) Tg ist niedrig im Verschluss und kurz danach.

In /b/ ist VOT kurz. Daher ist f0 zu Beginn von /a/ niedrig

Gegenargumente

f0 höher nach unaspiriertem [pa] im Vgl. zu [ba], obwohl VOT in beiden Lauten ähnlich ist

diese aerodynamischen Wirkungen auf f0 sind eher lokal: jedoch unterscheiden sich [ba, pha] in f0 fast bis zum zeitlichen Mittelpunkt des Vokals

Erklärung dieser mikroprosodischen Einflüsse

Horizontale Spannung in den Stimmlippen

Je schlaffer die Stimmlippen, umso weniger Kraft wird benötigt, um sie ins Schwingen zu setzen.

Daher sind die Stimmlippen in [ba] schlaff, und daher beginnt f0 niedrig

Gegenargumente

Keine empirische Beweise, für schlaffere Stimmlippen in [ba]

Die schlafferen Stimmlippen müssten auch in /ap, ab/ f0 diachron und synchron beeinflüssen

Erklärung dieser mikroprosodischen Einflüsse Vertikale Spannung in den Stimmlippen

Der Kehlkopf wird angehoben nach stimmlosen Lauten


Oder vielleicht wird der Kehlkopf nach /b/ gesenkt (damit das Volumen vom Mundraum, und daher Tg größer wird).

Kehlkopf-Hebung

- führt zur Spannung in den Stimmlippen
- kommt an der Grenze zwischen /p/ und dem danach kommenden Vokal vor (daher keinen Einfluss auf dem davor kommenden Vokal).

Löfqvist (1989)

EMG Analyse des Cricothyroid-Muskels

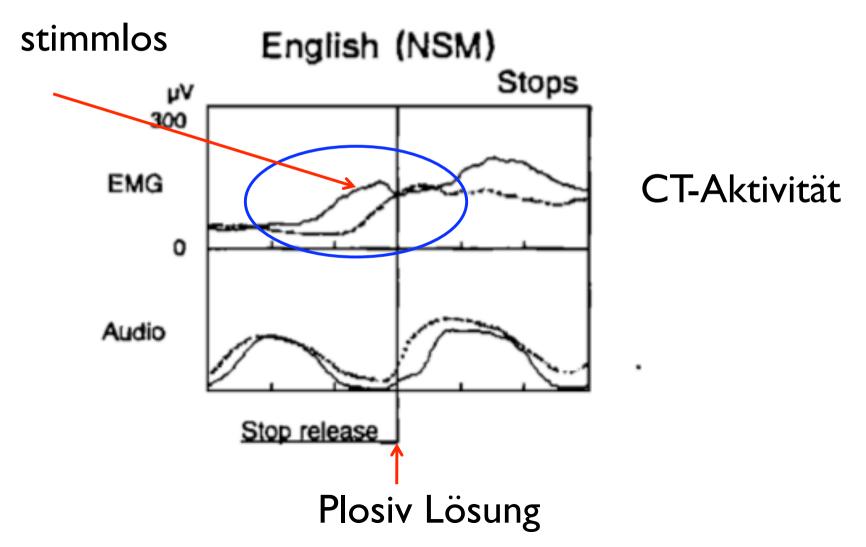
Durch den CT werden Cricoid + Arytenoids in entgegengesetzer Richtung zum Thyroid gekippt – und dadurch werden die Stimmlippen gespannt. Bei gespannteren Stimmlippen steigt die Grundfrequenz

EMG - .Hakendrahtelektroden

I. Ein dünner Draht mit einem Haken wird durch eine Nadel geleitet

- 2. Die Nadel wird in den Muskel eingeschoben und entzogen.
- 3. Der Draht bleibt wegen des Hakens im Muskel hängen und wird mit einem Verstärker verbunden

EMG Untersuchungen zum CT (Löfqvist, 1989)


Vpn: 2 AmEngl. und ein Vpn. Muttersprache holländisch. (Holländisch hat einen unaspirierten /p/)

Materialien: 'reiterant speech'.

'The man went to market' wurde durch verschiedene Cs und Vs ersetzt. zB /ma ma ma mama/

Löfqvist, (1989): Ergebnisse

CT-Aktivität höher in stimmlosen Lauten am Ende vom Verschluss

Löfqvist, (1989): Schlussfolgerungen

Theorie von Kingston: höhere f0 in [p^ha] ist Teil des Sprecherplans (beabsichtigt).

Jedoch wäre dann die höhere CT im stimmhaften Vokal zu erwarten – und nicht wie in Löfqvist (1989) im stimmlosen K.

Daher wird eine höhere CT im stimmlosen K produziert, eher um die Vibration der Stimmlippen zu unterdrücken (statt beabsichtigt f0 im Vokal zu erhöhen).