# Kontinua trennen temp = with(lax, C =="sVt") a.df = lax[temp,]; b.df = lax[!temp,] # GLMMs a.lmer = lmer(cbind(P, Q) ~ Stim + (1+Stim|S), family=binomial, data=a.df) b.lmer = lmer(cbind(P, Q) ~ Stim + (1+Stim|S), family=binomial, data=b.df) # Koeffiziente a.coef = as.matrix(coef(a.lmer)[[1]]) b.coef = as.matrix(coef(b.lmer)[[1]]) beide.coef = rbind(a.coef, b.coef) colnames(beide.coef) = c("k", "m") # Vpn Namen a.namen = rownames(a.coef) b.namen = rownames(b.coef) V = factor(c(a.namen, b.namen)) # Umkipppunkte um = -beide.coef[,1]/beide.coef[,2] # Between factor a.bet = between(a.namen, a.df, "S", "A") b.bet = between(b.namen, b.df, "S", "A") B = factor(c(as.character(a.bet), as.character(b.bet))) # Within factor Kon = factor(c(rep("a", nrow(a.coef)), rep("b", nrow(b.coef)))) # Data frame der Koeffiziente coef.df = data.frame(um, beide.coef, Vpn=V, Bet=B, Kontext=Kon, row.names=NULL) # Mixed model mm = lmer(um ~ Bet * Kontext + (1|Vpn), data=coef.df) anova(mm) # RM-Anova um.t = Anova.prepare(coef.df[,-c(2,3)], c("d", "s", "b", "w"))