# S 5 sample(1:6, 1, replace=T) sample(1:6, 10, replace=T) mean(sample(1:6, 10, replace=T)) wuerfel <- NULL for(j in 1:5000){ ergebnis = mean(sample(1:6, 10, replace=T)) wuerfel = c(wuerfel, ergebnis) } # S 6 mean(wuerfel) # S 8 proben <- function(unten=1, oben = 6, k = 10, N = 50) { # default: wir werfen 10 Wuerfel 50 Mal alle <- NULL for(j in 1:N){ ergebnis = mean(sample(unten:oben, k, replace=T)) alle = c(alle, ergebnis) } alle } # S 9 o = proben(0, 99, 10, 50) hist(o, col=3) # S 10 hist(o, col=3, freq=F) # S 12 osehrviele = proben(0, 99, 10, 50000) h4 = hist(osehrviele, col=3, freq=F, breaks=200) # S 15 sigma <- function(unten=1, oben = 6) { x = unten:oben n = length(x) m = mean(x) sqrt((sum(x^2)/n - m^2)) } # S. 17 sigma() # S. 19 o = proben(0, 99, 10, 50) hist(o, col=3, freq=F) mu = mean(0:99) SE = sigma(0, 99)/sqrt(10) curve(dnorm(x, mu, SE), 30, 80, add=T) # S. 20 o2 = proben(0, 99, 10, 5000) hist(o2, col=3, freq=F) curve(dnorm(x, mu, SE), 30, 80, add=T) # S. 25 curve(dnorm(x), xlim=c(-3, 3), xlab="Werte", ylab = "Wahrscheinlichkeitsdichte") x = seq(-4, 1.2, length=1000) y = dnorm(x) lines(x, y, type="h", col="turquoise") # S. 26 mu = mean(0:99) SE = sigma(0, 99)/sqrt(10) curve(dnorm(x, mu, SE), xlim = c(20, 80), ylab="Wahrscheinlichkeitsdichte", xlab = "Zahlen-Mittelwert", main = "Theoretische Verteilung der Mittelwerte") x = seq(15, 38, length=1000) y = dnorm(x, mu, SE) lines(x, y, type="h", col="turquoise") pnorm(38, mu, SE) # p. 30 qnorm(0.025, mu, SE) [1] 31.60895 qnorm(0.975, mu, SE)